These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Diversity-Oriented Synthesis of [2.2]Paracyclophane-derived Fused Imidazo[1,2-a]heterocycles by Groebke-Blackburn-Bienaymé Reaction: Accessing Cyclophanyl Imidazole Ligands Library. Stahlberger M; Schwarz N; Zippel C; Hohmann J; Nieger M; Hassan Z; Bräse S Chemistry; 2022 Jan; 28(3):e202103511. PubMed ID: 34792822 [TBL] [Abstract][Full Text] [Related]
3. The Groebke-Blackburn-Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019-2023). Martini C; Mardjan MID; Basso A Beilstein J Org Chem; 2024; 20():1839-1879. PubMed ID: 39109293 [TBL] [Abstract][Full Text] [Related]
4. Trends in the Synthesis of Antimicrobial Derivatives by using the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) Reactions. Naithani K; Bhowmik S Med Chem; 2024; 20(7):663-688. PubMed ID: 38523542 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of Imidazo[1,2- Zhong CR; Zhang YH; Yao G; Zhu HL; Hu YD; Zeng ZG; Liao CZ; He HT; Luo YT; Xiong J J Org Chem; 2023 Sep; 88(18):13125-13134. PubMed ID: 37616489 [TBL] [Abstract][Full Text] [Related]
9. Novel 5-Nitrofuran-Tagged Imidazo-Fused Azines and Azoles Amenable by the Groebke-Blackburn-Bienaymé Multicomponent Reaction: Activity Profile against ESKAPE Pathogens and Mycobacteria. Sapegin A; Rogacheva E; Kraeva L; Gureev M; Dogonadze M; Vinogradova T; Yablonsky P; Balalaie S; Baykov SV; Krasavin M Biomedicines; 2022 Sep; 10(9):. PubMed ID: 36140307 [TBL] [Abstract][Full Text] [Related]
10. A practical and efficient approach to imidazo[1,2- Shao T; Gong Z; Su T; Hao W; Che C Beilstein J Org Chem; 2017; 13():817-824. PubMed ID: 28546839 [TBL] [Abstract][Full Text] [Related]
11. Efforts towards an On-Target Version of the Groebke-Blackburn-Bienaymé (GBB) Reaction for Discovery of Druglike Urokinase (uPA) Inhibitors. Gladysz R; Vrijdag J; Van Rompaey D; Lambeir AM; Augustyns K; De Winter H; Van der Veken P Chemistry; 2019 Sep; 25(53):12380-12393. PubMed ID: 31298443 [TBL] [Abstract][Full Text] [Related]
13. A Sonochemical and Mechanochemical One-Pot Multicomponent/Click Coupling Strategy for the Sustainable Synthesis of Bis-Heterocyclic Drug Scaffolds. Rentería-Gómez MA; Calderón-Rangel D; Corona-Díaz A; Gámez-Montaño R Chempluschem; 2024 Sep; ():e202400455. PubMed ID: 39326014 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis of 1H-imidazo[1,2-b]pyrazoles via a sequential one-pot synthetic approach. Demjén A; Gyuris M; Wölfling J; Puskás LG; Kanizsai I Beilstein J Org Chem; 2014; 10():2338-44. PubMed ID: 25383103 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic Synthesis of Indole-Based Imidazopyridine using α-Amylase. Kamboj P; Tyagi V Chembiochem; 2024 Mar; 25(6):e202300824. PubMed ID: 38279707 [TBL] [Abstract][Full Text] [Related]
16. Assembly of New Heterocycles through an Effective Use of Bisaldehydes by Using a Sequential GBB/Ugi Reaction. Kaur T; Gautam RN; Sharma A Chem Asian J; 2016 Oct; 11(20):2938-2945. PubMed ID: 27529329 [TBL] [Abstract][Full Text] [Related]
17. Design, Synthesis, and Biological Evaluation of Imidazopyridines as PD-1/PD-L1 Antagonists. Butera R; Ważyńska M; Magiera-Mularz K; Plewka J; Musielak B; Surmiak E; Sala D; Kitel R; de Bruyn M; Nijman HW; Elsinga PH; Holak TA; Dömling A ACS Med Chem Lett; 2021 May; 12(5):768-773. PubMed ID: 34055224 [TBL] [Abstract][Full Text] [Related]
18. Generation of multimillion chemical space based on the parallel Groebke-Blackburn-Bienaymé reaction. Govor EV; Naumchyk V; Nestorak I; Radchenko DS; Dudenko D; Moroz YS; Kachkovsky OD; Grygorenko OO Beilstein J Org Chem; 2024; 20():1604-1613. PubMed ID: 39076290 [TBL] [Abstract][Full Text] [Related]