These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Limited Number of Cases May Yield Generalizable Models, a Proof of Concept in Deep Learning for Colon Histology. Holland L; Wei D; Olson KA; Mitra A; Graff JP; Jones AD; Durbin-Johnson B; Mitra AD; Rashidi HH J Pathol Inform; 2020; 11():5. PubMed ID: 32175170 [TBL] [Abstract][Full Text] [Related]
3. The Role of ArtificiaI Intelligence in Brain Tumor Diagnosis: An Evaluation of a Machine Learning Model. Abraham A; Jose R; Farooqui N; Mayer J; Ahmad J; Satti Z; Jacob TJ; Syed F; Toma M Cureus; 2024 Jun; 16(6):e61483. PubMed ID: 38952601 [TBL] [Abstract][Full Text] [Related]
4. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis. Chakrabarty S; Sotiras A; Milchenko M; LaMontagne P; Hileman M; Marcus D Radiol Artif Intell; 2021 Sep; 3(5):e200301. PubMed ID: 34617029 [TBL] [Abstract][Full Text] [Related]
5. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
6. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
7. Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning. Li W; Kazemifar S; Bai T; Nguyen D; Weng Y; Li Y; Xia J; Xiong J; Xie Y; Owrangi A; Jiang S Biomed Phys Eng Express; 2021 Feb; 7(2):. PubMed ID: 33545707 [No Abstract] [Full Text] [Related]
8. Sex classification from functional brain connectivity: Generalization to multiple datasets Generalizability of sex classifiers. Wiersch L; Friedrich P; Hamdan S; Komeyer V; Hoffstaedter F; Patil KR; Eickhoff SB; Weis S bioRxiv; 2024 Mar; ():. PubMed ID: 37693374 [TBL] [Abstract][Full Text] [Related]
9. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related]
10. External validation and transfer learning of convolutional neural networks for computed tomography dental artifact classification. Welch ML; McIntosh C; Traverso A; Wee L; Purdie TG; Dekker A; Haibe-Kains B; Jaffray DA Phys Med Biol; 2020 Feb; 65(3):035017. PubMed ID: 31851961 [TBL] [Abstract][Full Text] [Related]
11. Impact of pre-analytical variables on deep learning accuracy in histopathology. Jones AD; Graff JP; Darrow M; Borowsky A; Olson KA; Gandour-Edwards R; Datta Mitra A; Wei D; Gao G; Durbin-Johnson B; Rashidi HH Histopathology; 2019 Jul; 75(1):39-53. PubMed ID: 30801768 [TBL] [Abstract][Full Text] [Related]
12. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Pang S; Yu Z; Orgun MA Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085 [TBL] [Abstract][Full Text] [Related]
13. Generalizability of Machine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls. Maleki F; Ovens K; Gupta R; Reinhold C; Spatz A; Forghani R Radiol Artif Intell; 2023 Jan; 5(1):e220028. PubMed ID: 36721408 [TBL] [Abstract][Full Text] [Related]
14. Automated brain histology classification using machine learning. Ker J; Bai Y; Lee HY; Rao J; Wang L J Clin Neurosci; 2019 Aug; 66():239-245. PubMed ID: 31155342 [TBL] [Abstract][Full Text] [Related]
15. Comparative Analysis of Machine-Learning Model Performance in Image Analysis: The Impact of Dataset Diversity and Size. Pelletier ED; Jeffries SD; Song K; Hemmerling TM Anesth Analg; 2024 Dec; 139(6):1332-1339. PubMed ID: 39116018 [TBL] [Abstract][Full Text] [Related]
16. No-Code Platform-Based Deep-Learning Models for Prediction of Colorectal Polyp Histology from White-Light Endoscopy Images: Development and Performance Verification. Gong EJ; Bang CS; Lee JJ; Seo SI; Yang YJ; Baik GH; Kim JW J Pers Med; 2022 Jun; 12(6):. PubMed ID: 35743748 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the performance of traditional machine learning algorithms, convolutional neural network and AutoML Vision in ultrasound breast lesions classification: a comparative study. Wan KW; Wong CH; Ip HF; Fan D; Yuen PL; Fong HY; Ying M Quant Imaging Med Surg; 2021 Apr; 11(4):1381-1393. PubMed ID: 33816176 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier. Treder M; Lauermann JL; Eter N Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055 [TBL] [Abstract][Full Text] [Related]
19. Development of a manufacturer-independent convolutional neural network for the automated identification of vertebral compression fractures in vertebral fracture assessment images using active learning. Monchka BA; Schousboe JT; Davidson MJ; Kimelman D; Hans D; Raina P; Leslie WD Bone; 2022 Aug; 161():116427. PubMed ID: 35489707 [TBL] [Abstract][Full Text] [Related]
20. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images. Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]