These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34013353)

  • 41. Overexpression of
    Sun H; Guo X; Xu F; Wu D; Zhang X; Lou M; Luo F; Xu G; Zhang Y
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).
    Niu Y; Jin C; Jin G; Zhou Q; Lin X; Tang C; Zhang Y
    Plant Cell Environ; 2011 Aug; 34(8):1304-17. PubMed ID: 21477123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil.
    Rafique M; Ortas I; Rizwan M; Sultan T; Chaudhary HJ; Işik M; Aydin O
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20689-20700. PubMed ID: 31104234
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three CNGC Family Members, CNGC5, CNGC6, and CNGC9, Are Required for Constitutive Growth of
    Tan YQ; Yang Y; Zhang A; Fei CF; Gu LL; Sun SJ; Xu W; Wang L; Liu H; Wang YF
    Plant Commun; 2020 Jan; 1(1):100001. PubMed ID: 33404548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Through form to function: root hair development and nutrient uptake.
    Gilroy S; Jones DL
    Trends Plant Sci; 2000 Feb; 5(2):56-60. PubMed ID: 10664614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micro-scale interactions between Arabidopsis root hairs and soil particles influence soil erosion.
    De Baets S; Denbigh TDG; Smyth KM; Eldridge BM; Weldon L; Higgins B; Matyjaszkiewicz A; Meersmans J; Larson ER; Chenchiah IV; Liverpool TB; Quine TA; Grierson CS
    Commun Biol; 2020 Apr; 3(1):164. PubMed ID: 32246054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.
    Ohkama-Ohtsu N; Wasaki J
    Plant Cell Physiol; 2010 Aug; 51(8):1255-64. PubMed ID: 20624893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Root nutrient foraging.
    Giehl RF; von Wirén N
    Plant Physiol; 2014 Oct; 166(2):509-17. PubMed ID: 25082891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High resolution synchrotron imaging of wheat root hairs growing in soil and image based modelling of phosphate uptake.
    Keyes SD; Daly KR; Gostling NJ; Jones DL; Talboys P; Pinzer BR; Boardman R; Sinclair I; Marchant A; Roose T
    New Phytol; 2013 Jun; 198(4):1023-1029. PubMed ID: 23600607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis.
    Wang FL; Tan YL; Wallrad L; Du XQ; Eickelkamp A; Wang ZF; He GF; Rehms F; Li Z; Han JP; Schmitz-Thom I; Wu WH; Kudla J; Wang Y
    Dev Cell; 2021 Mar; 56(6):781-794.e6. PubMed ID: 33756120
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein Dynamics in Young Maize Root Hairs in Response to Macro- and Micronutrient Deprivation.
    Li Z; Phillip D; Neuhäuser B; Schulze WX; Ludewig U
    J Proteome Res; 2015 Aug; 14(8):3362-71. PubMed ID: 26179556
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lateral root organogenesis - from cell to organ.
    Benková E; Bielach A
    Curr Opin Plant Biol; 2010 Dec; 13(6):677-83. PubMed ID: 20934368
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms and control of nutrient uptake in plants.
    Reid R; Hayes J
    Int Rev Cytol; 2003; 229():73-114. PubMed ID: 14669955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A cell surface arabinogalactan-peptide influences root hair cell fate.
    Borassi C; Gloazzo Dorosz J; Ricardi MM; Carignani Sardoy M; Pol Fachin L; Marzol E; Mangano S; Rodríguez Garcia DR; Martínez Pacheco J; Rondón Guerrero YDC; Velasquez SM; Villavicencio B; Ciancia M; Seifert G; Verli H; Estevez JM
    New Phytol; 2020 Aug; 227(3):732-743. PubMed ID: 32064614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana.
    De Pessemier J; Chardon F; Juraniec M; Delaplace P; Hermans C
    Mech Dev; 2013 Jan; 130(1):45-53. PubMed ID: 22683348
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M; Mäser P; Schroeder JI
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environmentally induced plasticity of root hair development in Arabidopsis.
    Müller M; Schmidt W
    Plant Physiol; 2004 Jan; 134(1):409-19. PubMed ID: 14730071
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scaling of physical constraints at the root-soil interface to macroscopic patterns of nutrient retention in ecosystems.
    Gerber S; Brookshire EN
    Am Nat; 2014 Mar; 183(3):418-30. PubMed ID: 24561604
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integration of transcriptomic and proteomic analysis towards understanding the systems biology of root hairs.
    Wang H; Lan P; Shen RF
    Proteomics; 2016 Mar; 16(5):877-93. PubMed ID: 26749523
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Root growth and plant biomass in Lolium perenne exploring a nutrient-rich patch in soil.
    Nakamura R; Kachi N; Suzuki J
    J Plant Res; 2008 Nov; 121(6):547-57. PubMed ID: 18751939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.