These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34013421)

  • 21. Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface.
    Zhang Y; Pei G; Chen L; Zhang W
    Biofouling; 2016 Aug; 32(7):725-36. PubMed ID: 27299565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ.
    Jayaraman A; Hallock PJ; Carson RM; Lee CC; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 1999 Aug; 52(2):267-75. PubMed ID: 10499267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm.
    Krantz GP; Lucas K; Wunderlich EL; Hoang LT; Avci R; Siuzdak G; Fields MW
    Biofouling; 2019 Jul; 35(6):669-683. PubMed ID: 31402749
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of selected biocides on microbiologically influenced corrosion caused by Desulfovibrio ferrophilus IS5.
    Sharma M; Liu H; Chen S; Cheng F; Voordouw G; Gieg L
    Sci Rep; 2018 Nov; 8(1):16620. PubMed ID: 30413730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase.
    Xu L; Ivanova SA; Gu T
    Bioelectrochemistry; 2023 Dec; 154():108508. PubMed ID: 37451042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina.
    Qian H; Liu S; Wang P; Huang Y; Lou Y; Huang L; Jiang C; Zhang D
    Bioelectrochemistry; 2020 Dec; 136():107635. PubMed ID: 32866835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical property degradation of X80 pipeline steel due to microbiologically influenced corrosion caused by
    Li Z; Yang J; Guo H; Kumseranee S; Punpruk S; Mohamed ME; Saleh MA; Gu T
    Front Bioeng Biotechnol; 2022; 10():1028462. PubMed ID: 36420439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic effect of carbon starvation and exogenous redox mediators on corrosion of X70 pipeline steel induced by Desulfovibrio singaporenus.
    Guan F; Liu Z; Dong X; Zhai X; Zhang B; Duan J; Wang N; Gao Y; Yang L; Hou B
    Sci Total Environ; 2021 Sep; 788():147573. PubMed ID: 34034174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy.
    Giorgi-Pérez AM; Arboleda-Ordoñez AM; Villamizar-Suárez W; Cardeñosa-Mendoza M; Jaimes-Prada R; Rincón-Orozco B; Niño-Gómez ME
    Bioelectrochemistry; 2021 Oct; 141():107868. PubMed ID: 34126368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline.
    Su H; Tang R; Peng X; Gao A; Han Y
    Bioelectrochemistry; 2020 Apr; 132():107406. PubMed ID: 31812086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of yeast extract on microbiologically influenced corrosion of X70 pipeline steel by Desulfovibrio bizertensis SY-1.
    Guan F; Pei Y; Duan J; Sand W; Zhang R; Zhai X; Zhang Y; Hou B
    Bioelectrochemistry; 2024 Jun; 157():108650. PubMed ID: 38286079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.
    Wikieł AJ; Datsenko I; Vera M; Sand W
    Bioelectrochemistry; 2014 Jun; 97():52-60. PubMed ID: 24238898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corrosion of Q235 carbon steel induced by sulfate-reducing bacteria in groundwater: corrosion behavior, corrosion product, and microbial community structure.
    Hua W; Sun R; Wang X; Zhang Y; Li J; Qiu R; Gao Y
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):4269-4279. PubMed ID: 38097840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions.
    Li Q; Wang J; Xing X; Hu W
    Bioelectrochemistry; 2018 Aug; 122():40-50. PubMed ID: 29547738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon starvation considerably accelerated nickel corrosion by Desulfovibrio vulgaris.
    Pu Y; Tian Y; Hou S; Dou W; Chen S
    Bioelectrochemistry; 2023 Oct; 153():108453. PubMed ID: 37230047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids.
    Li Y; Jia R; Al-Mahamedh HH; Xu D; Gu T
    Front Microbiol; 2016; 7():896. PubMed ID: 27379039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dispersal and inhibitory roles of mannose, 2-deoxy-d-glucose and N-acetylgalactosaminidase on the biofilm of Desulfovibrio vulgaris.
    Poosarla VG; Wood TL; Zhu L; Miller DS; Yin B; Wood TK
    Environ Microbiol Rep; 2017 Dec; 9(6):779-787. PubMed ID: 28925553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of biofilm in the maturation process on the corrosion behavior of galvanized steel: long-term evaluation by EIS.
    Unsal T; Cansever N; Ilhan-Sungur E
    World J Microbiol Biotechnol; 2019 Jan; 35(2):22. PubMed ID: 30656423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of heavy nitrate corrosion in anaerobe aquifer injection water biofilm: a case study in a flow rig.
    Drønen K; Roalkvam I; Beeder J; Torsvik T; Steen IH; Skauge A; Liengen T
    Environ Sci Technol; 2014; 48(15):8627-35. PubMed ID: 25020005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.