These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 34013575)

  • 41. High oxidation state enabled by plated Ni-P achieves superior electrocatalytic performance for 5-hydroxymethylfurfural oxidation reaction.
    Lin R; Salehi M; Guo J; Seifitokaldani A
    iScience; 2022 Aug; 25(8):104744. PubMed ID: 35942099
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.
    You B; Jiang N; Liu X; Sun Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9913-7. PubMed ID: 27417546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combined biomass valorization and hydrogen production in a photoelectrochemical cell.
    Cha HG; Choi KS
    Nat Chem; 2015 Apr; 7(4):328-33. PubMed ID: 25803471
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst.
    Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D
    Front Chem; 2022; 10():853112. PubMed ID: 35372283
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H
    Han G; Jin YH; Burgess RA; Dickenson NE; Cao XM; Sun Y
    J Am Chem Soc; 2017 Nov; 139(44):15584-15587. PubMed ID: 29020768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Advances in Electrochemical Modification Strategies of 5-Hydroxymethylfurfural.
    Simoska O; Rhodes Z; Weliwatte S; Cabrera-Pardo JR; Gaffney EM; Lim K; Minteer SD
    ChemSusChem; 2021 Apr; 14(7):1674-1686. PubMed ID: 33577707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immobilised Ruthenium Complexes for the Electrooxidation of 5-Hydroxymethylfurfural.
    Bühler J; Muntwyler A; Roithmeyer H; Adams P; Besmer ML; Blacque O; Tilley SD
    Chemistry; 2024 Apr; 30(19):e202304181. PubMed ID: 38285807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorus vacancy-engineered Ce-doped CoP nanosheets for the electrocatalytic oxidation of 5-hydroxymethylfurfural.
    Bi J; Ying H; Xu H; Zhao X; Du X; Hao J; Li Z
    Chem Commun (Camb); 2022 Jul; 58(56):7817-7820. PubMed ID: 35748340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photothermal Assisted Biomass Oxidation for Pairing Carbon Dioxide Electroreduction with Low Cell Potential.
    Chen H; Peng R; Hu T; Tang N; Wang Y; Zhang Y; Ni W; Zhang S
    ChemSusChem; 2024 Aug; ():e202400493. PubMed ID: 39115016
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing Low-Potential Electrosynthesis of 2,5-Furandicarboxylic Acid on Monolithic CuO by Constructing Oxygen Vacancies.
    Jia Y; Gui Z; Zhang W; Yan T; Tan J; Chen L; Gao Q; Zhang Y; Tang Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8697-8706. PubMed ID: 38330188
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-valence metal sites induced by heterostructure engineering for promoting 5-hydroxymethylfurfural electrooxidation and hydrogen generation.
    Shang N; Li W; Wu Q; Li H; Wang H; Wang C; Bai G
    J Colloid Interface Sci; 2024 Apr; 659():621-628. PubMed ID: 38198939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids.
    Chen R; Xin J; Yan D; Dong H; Lu X; Zhang S
    ChemSusChem; 2019 Jun; 12(12):2715-2724. PubMed ID: 30908861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequential oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by an evolved aryl-alcohol oxidase.
    Viña-Gonzalez J; Martinez AT; Guallar V; Alcalde M
    Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140293. PubMed ID: 31676448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-Reconstruction of Sulfate-Terminated Copper Oxide Nanorods for Efficient and Stable 5-Hydroxymethylfurfural Electrooxidation.
    Fan Z; Yang Q; Zhang W; Wen H; Yuan H; He J; Yang HG; Chen Z
    Nano Lett; 2023 Dec; 23(23):11314-11322. PubMed ID: 38018816
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrocatalytic Poly(3,4-ethylenedioxythiophene) for Electrochemical Conversion of 5-Hydroxymethylfurfural.
    Carli S; Marchini E; Catani M; Orlandi M; Bazzanella N; Barboni D; Boaretto R; Cavazzini A; Caramori S
    Langmuir; 2024 May; 40(19):10115-10128. PubMed ID: 38703121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural.
    Hossain GS; Yuan H; Li J; Shin HD; Wang M; Du G; Chen J; Liu L
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27795308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrathin Two-Dimensional Bimetal-Organic Framework Nanosheets as High-Performance Electrocatalysts for Benzyl Alcohol Oxidation.
    Song Y; Yuan M; Su W; Guo D; Chen X; Sun G; Zhang W
    Inorg Chem; 2022 May; 61(19):7308-7317. PubMed ID: 35507543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Platelike carbon-encapsulated nickel nanocrystals for efficient electrooxidation of 5-hydroxymethylfurfural.
    Sang T; Xu H; Wang W; Ji D; Hao J; Li Z
    Chem Commun (Camb); 2024 May; 60(45):5868-5871. PubMed ID: 38756077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cu
    Bi J; Xu H; Wang W; Sang T; Jiang A; Hao J; Li Z
    Chemistry; 2023 Jul; 29(42):e202300973. PubMed ID: 37100743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proton-Coupled Electron Transfer in Photoelectrochemical Alcohol Oxidation Enhanced by Nickel-based Cocatalysts.
    Gao B; Mu X; Feng J; Huang H; Liu J; Liu W; Zou Z; Li Z
    Angew Chem Int Ed Engl; 2024 Oct; ():e202413298. PubMed ID: 39364573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.