These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 34013586)
1. Comparison of maximum likelihood and conventional PET scatter scaling methods for Bal H; Kiser JW; Conti M; Bowen SL Med Phys; 2021 Aug; 48(8):4218-4228. PubMed ID: 34013586 [TBL] [Abstract][Full Text] [Related]
2. Deep-JASC: joint attenuation and scatter correction in whole-body Shiri I; Arabi H; Geramifar P; Hajianfar G; Ghafarian P; Rahmim A; Ay MR; Zaidi H Eur J Nucl Med Mol Imaging; 2020 Oct; 47(11):2533-2548. PubMed ID: 32415552 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based attenuation correction for whole-body PET - a multi-tracer study with Toyonaga T; Shao D; Shi L; Zhang J; Revilla EM; Menard D; Ankrah J; Hirata K; Chen MK; Onofrey JA; Lu Y Eur J Nucl Med Mol Imaging; 2022 Jul; 49(9):3086-3097. PubMed ID: 35277742 [TBL] [Abstract][Full Text] [Related]
5. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with Magota K; Shiga T; Asano Y; Shinyama D; Ye J; Perkins AE; Maniawski PJ; Toyonaga T; Kobayashi K; Hirata K; Katoh C; Hattori N; Tamaki N J Nucl Med; 2017 Dec; 58(12):2020-2025. PubMed ID: 28646012 [TBL] [Abstract][Full Text] [Related]
6. Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain Yang J; Park D; Gullberg GT; Seo Y Phys Med Biol; 2019 Apr; 64(7):075019. PubMed ID: 30743246 [TBL] [Abstract][Full Text] [Related]
8. The value of Bayesian penalized likelihood reconstruction for improving lesion conspicuity of malignant lung tumors on Kurita Y; Ichikawa Y; Nakanishi T; Tomita Y; Hasegawa D; Murashima S; Hirano T; Sakuma H Ann Nucl Med; 2020 Apr; 34(4):272-279. PubMed ID: 32060780 [TBL] [Abstract][Full Text] [Related]
9. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? Parvizi N; Franklin JM; McGowan DR; Teoh EJ; Bradley KM; Gleeson FV Eur J Radiol; 2015 Oct; 84(10):1873-8. PubMed ID: 26163992 [TBL] [Abstract][Full Text] [Related]
10. More advantages in detecting bone and soft tissue metastases from prostate cancer using Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003 [TBL] [Abstract][Full Text] [Related]
11. A quantitative clinical evaluation of simultaneous reconstruction of attenuation and activity in time-of-flight PET. Zhang H; Wang J; Li N; Zhang Y; Cui J; Huo L; Zhang H BMC Med Imaging; 2023 Feb; 23(1):35. PubMed ID: 36849906 [TBL] [Abstract][Full Text] [Related]
12. Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for Bouyeure-Petit AC; Chastan M; Edet-Sanson A; Becker S; Thureau S; Houivet E; Vera P; Hapdey S Br J Radiol; 2017 Feb; 90(1070):20160549. PubMed ID: 27936893 [TBL] [Abstract][Full Text] [Related]
13. Practical joint reconstruction of activity and attenuation with autonomous scaling for time-of-flight PET. Li Y; Matej S; Karp JS Phys Med Biol; 2020 Dec; 65(23):235037. PubMed ID: 32340014 [TBL] [Abstract][Full Text] [Related]
14. A data-driven respiratory motion estimation approach for PET based on time-of-flight weighted positron emission particle tracking. Tumpa TR; Acuff SN; Gregor J; Lee S; Hu D; Osborne DR Med Phys; 2021 Mar; 48(3):1131-1143. PubMed ID: 33226647 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the impact of model-based scatter correction on [18F]-FDG 3D brain PET in healthy subjects using statistical parametric mapping. Montandon ML; Slosman DO; Zaidi H Neuroimage; 2003 Nov; 20(3):1848-56. PubMed ID: 14642494 [TBL] [Abstract][Full Text] [Related]
16. [Improvement of Cold Artifacts in Body Trunk Kawarai M; Owaki T; Nakajima K Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(9):947-958. PubMed ID: 34544919 [TBL] [Abstract][Full Text] [Related]
17. Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning. Shiri I; Vafaei Sadr A; Akhavan A; Salimi Y; Sanaat A; Amini M; Razeghi B; Saberi A; Arabi H; Ferdowsi S; Voloshynovskiy S; Gündüz D; Rahmim A; Zaidi H Eur J Nucl Med Mol Imaging; 2023 Mar; 50(4):1034-1050. PubMed ID: 36508026 [TBL] [Abstract][Full Text] [Related]
18. Comparison of image quality between step-and-shoot and continuous bed motion techniques in whole-body Yamashita S; Yamamoto H; Nakaichi T; Yoneyama T; Yokoyama K Ann Nucl Med; 2017 Nov; 31(9):686-695. PubMed ID: 28815414 [TBL] [Abstract][Full Text] [Related]
19. Joint Reconstruction of Activity and Attenuation in Time-of-Flight PET: A Quantitative Analysis. Rezaei A; Deroose CM; Vahle T; Boada F; Nuyts J J Nucl Med; 2018 Oct; 59(10):1630-1635. PubMed ID: 29496982 [TBL] [Abstract][Full Text] [Related]
20. Strategies for deep learning-based attenuation and scatter correction of brain Jahangir R; Kamali-Asl A; Arabi H; Zaidi H Med Phys; 2024 Feb; 51(2):870-880. PubMed ID: 38197492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]