These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 34013636)

  • 1. Principles and open questions in functional brain network reconstruction.
    Korhonen O; Zanin M; Papo D
    Hum Brain Mapp; 2021 Aug; 42(11):3680-3711. PubMed ID: 34013636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research.
    van Diessen E; Numan T; van Dellen E; van der Kooi AW; Boersma M; Hofman D; van Lutterveld R; van Dijk BW; van Straaten EC; Hillebrand A; Stam CJ
    Clin Neurophysiol; 2015 Aug; 126(8):1468-81. PubMed ID: 25511636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks.
    Li X; Gan JQ; Wang H
    Neuroimage; 2018 Feb; 166():259-275. PubMed ID: 29117581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual Information Better Quantifies Brain Network Architecture in Children with Epilepsy.
    Zhang W; Muravina V; Azencott R; Chu ZD; Paldino MJ
    Comput Math Methods Med; 2018; 2018():6142898. PubMed ID: 30425750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dyconnmap: Dynamic connectome mapping-A neuroimaging python module.
    Marimpis AD; Dimitriadis SI; Goebel R
    Hum Brain Mapp; 2021 Oct; 42(15):4909-4939. PubMed ID: 34250674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within node connectivity changes, not simply edge changes, influence graph theory measures in functional connectivity studies of the brain.
    Luo W; Greene AS; Constable RT
    Neuroimage; 2021 Oct; 240():118332. PubMed ID: 34224851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.
    Feige B; Spiegelhalder K; Kiemen A; Bosch OG; Tebartz van Elst L; Hennig J; Seifritz E; Riemann D
    Neuroimage; 2017 Jan; 145(Pt A):1-10. PubMed ID: 27637863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph analysis of functional brain networks: practical issues in translational neuroscience.
    De Vico Fallani F; Richiardi J; Chavez M; Achard S
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex brain networks: graph theoretical analysis of structural and functional systems.
    Bullmore E; Sporns O
    Nat Rev Neurosci; 2009 Mar; 10(3):186-98. PubMed ID: 19190637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordinal Pattern: A New Descriptor for Brain Connectivity Networks.
    Zhang D; Huang J; Jie B; Du J; Tu L; Liu M
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1711-1722. PubMed ID: 29969421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning dynamic graph embeddings for accurate detection of cognitive state changes in functional brain networks.
    Lin Y; Yang D; Hou J; Yan C; Kim M; Laurienti PJ; Wu G
    Neuroimage; 2021 Apr; 230():117791. PubMed ID: 33545348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Language Recovery after Brain Injury: A Structural Network Control Theory Study.
    Wilmskoetter J; He X; Caciagli L; Jensen JH; Marebwa B; Davis KA; Fridriksson J; Basilakos A; Johnson LP; Rorden C; Bassett D; Bonilha L
    J Neurosci; 2022 Jan; 42(4):657-669. PubMed ID: 34872927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the brain behave like a (complex) network? I. Dynamics.
    Papo D; BuldĂș JM
    Phys Life Rev; 2024 Mar; 48():47-98. PubMed ID: 38145591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-subject phase synchronization for exploratory analysis of task-fMRI.
    Bolt T; Nomi JS; Vij SG; Chang C; Uddin LQ
    Neuroimage; 2018 Aug; 176():477-488. PubMed ID: 29654878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Multidimensional neuroimaging approach for studying brain network].
    Hanakawa T
    Rinsho Shinkeigaku; 2010 Nov; 50(11):901-2. PubMed ID: 21921503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of functional network organization through graph mixture learning.
    Ricchi I; Tarun A; Maretic HP; Frossard P; Van De Ville D
    Neuroimage; 2022 May; 252():119037. PubMed ID: 35219859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased segregation of functional networks in developing brains.
    He W; Sowman PF; Brock J; Etchell AC; Stam CJ; Hillebrand A
    Neuroimage; 2019 Oct; 200():607-620. PubMed ID: 31271847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal stability of functional brain modules associated with human intelligence.
    Hilger K; Fukushima M; Sporns O; Fiebach CJ
    Hum Brain Mapp; 2020 Feb; 41(2):362-372. PubMed ID: 31587450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. There is no single functional atlas even for a single individual: Functional parcel definitions change with task.
    Salehi M; Greene AS; Karbasi A; Shen X; Scheinost D; Constable RT
    Neuroimage; 2020 Mar; 208():116366. PubMed ID: 31740342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility to everyday cognitive failure is reflected in functional network interactions in the resting brain.
    Bey K; Montag C; Reuter M; Weber B; Markett S
    Neuroimage; 2015 Nov; 121():1-9. PubMed ID: 26210814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.