BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34013691)

  • 1. [The forensic implications of the relationship between the proteolytic enzymes activity and the changes in NADH and FAD fluorescence intensity in skeletal muscle when determining the time of death (experimental study)].
    Babkina AS; Sundukov DV; Golubev AM
    Sud Med Ekspert; 2021; 64(3):24-28. PubMed ID: 34013691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of the fluorescence intensity of coenzymes NADH and FAD in the skeletal muscle of the rat depending on the post-mortem interval].
    Babkina AS; Sundukov DV; Golubev AM; Ryzhkov IA; Tsokolaeva ZI; Zarzhetsky YV
    Sud Med Ekspert; 2020; 63(1):31-35. PubMed ID: 32040085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence for the detection of cell death.
    Wang HW; Wei YH; Guo HW
    Anticancer Agents Med Chem; 2009 Nov; 9(9):1012-7. PubMed ID: 19663784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on predicting skin flap necrosis by fluorescence in the FAD and NADH bands during surgery.
    Mokrý M; Gál P; Harakalová M; Hutnanová Z; Kusnír J; Mozes S; Sabo J
    Photochem Photobiol; 2007; 83(5):1193-6. PubMed ID: 17880514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription.
    Huang F
    Nucleic Acids Res; 2003 Feb; 31(3):e8. PubMed ID: 12560511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid changes in NADH and flavin autofluorescence in rat cardiac trabeculae reveal large mitochondrial complex II reserve capacity.
    Wüst RC; Helmes M; Stienen GJ
    J Physiol; 2015 Apr; 593(8):1829-40. PubMed ID: 25640645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dependence of Ca2+ release from intracellular stores on NADH and FAD levels in fertilized and unfertilized bovine oocytes].
    Denisenko VIu; Kuz'mina TI; Shokin OV
    Tsitologiia; 2005; 47(8):704-8. PubMed ID: 16706214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies.
    Heikal AA
    Biomark Med; 2010 Apr; 4(2):241-63. PubMed ID: 20406068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy.
    Chakraborty S; Nian FS; Tsai JW; Karmenyan A; Chiou A
    Sci Rep; 2016 Jan; 6():19145. PubMed ID: 26758390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage.
    Kang C; Wu HL; Zhou C; Xiang SX; Zhang XH; Yu YJ; Yu RQ
    Anal Chim Acta; 2016 Mar; 910():36-44. PubMed ID: 26873466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive detection of intracellular environment of normal and cancer cells by autofluorescence lifetime imaging.
    Awasthi K; Moriya D; Nakabayashi T; Li L; Ohta N
    J Photochem Photobiol B; 2016 Dec; 165():256-265. PubMed ID: 27842280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells.
    Hu L; Wang N; Cardona E; Walsh AJ
    Biomed Opt Express; 2020 Oct; 11(10):5674-5688. PubMed ID: 33149978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus--redox states of the FAD prosthetic group and mechanism of Ag+ inhibition.
    Steuber J; Krebs W; Dimroth P
    Eur J Biochem; 1997 Nov; 249(3):770-6. PubMed ID: 9395325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD.
    Freymüller C; Kalinina S; Rück A; Sroka R; Rühm A
    J Biophotonics; 2021 Jul; 14(7):e202100024. PubMed ID: 33749988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
    Bartolomé F; Abramov AY
    Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.