These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 34013930)
1. The investigation of methane storage at the Ni-MOF-74 material: a periodic DFT calculation. Yeh CH; Khan AH; Miyazaki T; Jiang JC Phys Chem Chem Phys; 2021 Jun; 23(21):12270-12279. PubMed ID: 34013930 [TBL] [Abstract][Full Text] [Related]
2. A Multifaceted Study of Methane Adsorption in Metal-Organic Frameworks by Using Three Complementary Techniques. Zhang Y; Lucier BEG; Fischer M; Gan Z; Boyle PD; Desveaux B; Huang Y Chemistry; 2018 Jun; 24(31):7866-7881. PubMed ID: 29575184 [TBL] [Abstract][Full Text] [Related]
3. Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored? Wu H; Simmons JM; Liu Y; Brown CM; Wang XS; Ma S; Peterson VK; Southon PD; Kepert CJ; Zhou HC; Yildirim T; Zhou W Chemistry; 2010 May; 16(17):5205-14. PubMed ID: 20358553 [TBL] [Abstract][Full Text] [Related]
4. High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. Wu H; Zhou W; Yildirim T J Am Chem Soc; 2009 Apr; 131(13):4995-5000. PubMed ID: 19275154 [TBL] [Abstract][Full Text] [Related]
5. Computational prediction of high methane storage capacity in V-MOF-74. Hyeon S; Kim YC; Kim J Phys Chem Chem Phys; 2017 Aug; 19(31):21132-21139. PubMed ID: 28749516 [TBL] [Abstract][Full Text] [Related]
6. Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage. Manos G; Dunne LJ Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30314317 [TBL] [Abstract][Full Text] [Related]
7. Nickel-Based Metal-Organic Frameworks for Coal-Bed Methane Purification with Record CH Wang SM; Shivanna M; Yang QY Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202201017. PubMed ID: 35132777 [TBL] [Abstract][Full Text] [Related]
8. Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14). Karra JR; Grabicka BE; Huang YG; Walton KS J Colloid Interface Sci; 2013 Feb; 392():331-336. PubMed ID: 23158044 [TBL] [Abstract][Full Text] [Related]
9. Polarizable Force Fields for CO Becker TM; Heinen J; Dubbeldam D; Lin LC; Vlugt TJ J Phys Chem C Nanomater Interfaces; 2017 Mar; 121(8):4659-4673. PubMed ID: 28286598 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure. Wu D; Guo X; Sun H; Navrotsky A J Phys Chem Lett; 2015 Jul; 6(13):2439-43. PubMed ID: 26266715 [TBL] [Abstract][Full Text] [Related]
11. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. Alezi D; Belmabkhout Y; Suyetin M; Bhatt PM; Weseliński ŁJ; Solovyeva V; Adil K; Spanopoulos I; Trikalitis PN; Emwas AH; Eddaoudi M J Am Chem Soc; 2015 Oct; 137(41):13308-18. PubMed ID: 26364990 [TBL] [Abstract][Full Text] [Related]
12. A Rational Design of Microporous Nitrogen-Rich Lanthanide Metal-Organic Frameworks for CO Mohan M; Essalhi M; Durette D; Rana LK; Ayevide FK; Maris T; Duong A ACS Appl Mater Interfaces; 2020 Nov; 12(45):50619-50627. PubMed ID: 33103881 [TBL] [Abstract][Full Text] [Related]
13. Grand canonical Monte Carlo simulation for determination of optimum parameters for adsorption of supercritical methane in pillared layered pores. Cao D; Wang W; Duan X J Colloid Interface Sci; 2002 Oct; 254(1):1-7. PubMed ID: 12702418 [TBL] [Abstract][Full Text] [Related]
14. High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. Jiang J; Furukawa H; Zhang YB; Yaghi OM J Am Chem Soc; 2016 Aug; 138(32):10244-51. PubMed ID: 27442620 [TBL] [Abstract][Full Text] [Related]
15. First-principles descriptors of CO chemisorption on Ni and Cu surfaces. Gameel KM; Sharafeldin IM; Allam NK Phys Chem Chem Phys; 2019 Jun; 21(21):11476-11487. PubMed ID: 31112167 [TBL] [Abstract][Full Text] [Related]
16. Construction of Buertai Coal Macromolecular Model and GCMC Simulation of Methane Adsorption in Micropores. Yang Z; Yin Z; Xue W; Meng Z; Li Y; Long J; Wang J ACS Omega; 2021 May; 6(17):11173-11182. PubMed ID: 34056272 [TBL] [Abstract][Full Text] [Related]
17. Iodine Capture Using Zr-Based Metal-Organic Frameworks (Zr-MOFs): Adsorption Performance and Mechanism. Chen P; He X; Pang M; Dong X; Zhao S; Zhang W ACS Appl Mater Interfaces; 2020 May; 12(18):20429-20439. PubMed ID: 32255599 [TBL] [Abstract][Full Text] [Related]
18. Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF. Rubeš M; Grajciar L; Bludský O; Wiersum AD; Llewellyn PL; Nachtigall P Chemphyschem; 2012 Feb; 13(2):488-95. PubMed ID: 22170696 [TBL] [Abstract][Full Text] [Related]
19. Integration of Open Metal Sites and Lewis Basic Sites for Construction of a Cu MOF with a Rare Chiral O Meng L; Niu Z; Liang C; Dong X; Liu K; Li G; Li C; Han Y; Shi Z; Feng S Chemistry; 2018 Sep; 24(50):13181-13187. PubMed ID: 29344997 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Methane Storage in Graphene Oxide Induced by an External Electric Field: A Study by MD Simulations and DFT Calculation. Han Y; Zhao J; Guo X; Jiao T Langmuir; 2023 Jun; 39(22):7648-7659. PubMed ID: 37222045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]