These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34014072)

  • 1. Ultranarrow and Wavelength-Scalable Thermal Emitters Driven by High-Order Antiferromagnetic Resonances in Dielectric Nanogratings.
    Liu M; Zhao C
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25306-25315. PubMed ID: 34014072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances.
    Wu C; Arju N; Kelp G; Fan JA; Dominguez J; Gonzales E; Tutuc E; Brener I; Shvets G
    Nat Commun; 2014 May; 5():3892. PubMed ID: 24861488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Optics in Dielectric Guided-Mode Resonant Structures and Resonant Metasurfaces.
    Raghunathan V; Deka J; Menon S; Biswas R; A S LK
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32344556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces.
    Liang Y; Koshelev K; Zhang F; Lin H; Lin S; Wu J; Jia B; Kivshar Y
    Nano Lett; 2020 Sep; 20(9):6351-6356. PubMed ID: 32479094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Field Mapping of Optical Fabry-Perot Modes in All-Dielectric Nanoantennas.
    Frolov AY; Verellen N; Li J; Zheng X; Paddubrouskaya H; Denkova D; Shcherbakov MR; Vandenbosch GAE; Panov VI; Van Dorpe P; Fedyanin AA; Moshchalkov VV
    Nano Lett; 2017 Dec; 17(12):7629-7637. PubMed ID: 29083191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrally stable thermal emitters enabled by material-based high-impedance surfaces.
    Navajas D; Pérez-Escudero JM; Liberal I
    Nanoscale Adv; 2023 Jan; 5(3):650-658. PubMed ID: 36756519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics.
    Lee GJ; Kim DH; Heo SY; Song YM
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53206-53214. PubMed ID: 33172255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Q all-dielectric thermal emitters for mid-infrared gas-sensing applications.
    Ali MO; Tait N; Gupta S
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jan; 35(1):119-124. PubMed ID: 29328100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput screening of a high-Q mid-infrared Tamm emitter by material informatics.
    Xi W; Liu Y; Song J; Hu R; Luo X
    Opt Lett; 2021 Feb; 46(4):888-891. PubMed ID: 33577540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiresonant High-
    Reshef O; Saad-Bin-Alam M; Huttunen MJ; Carlow G; Sullivan BT; Ménard JM; Dolgaleva K; Boyd RW
    Nano Lett; 2019 Sep; 19(9):6429-6434. PubMed ID: 31454252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface.
    Cui C; Yuan S; Qiu X; Zhu L; Wang Y; Li Y; Song J; Huang Q; Zeng C; Xia J
    Nanoscale; 2019 Aug; 11(30):14446-14454. PubMed ID: 31334735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of the Photon Local Density of States: Strong Inhibition of Spontaneous Emission near the Resonant and High-Refractive Index Dielectric Nano-objects.
    Muravitskaya A; Movsesyan A; Guzatov DV; Baudrion AL; Adam PM; Gaponenko SV; Vincent R
    J Phys Chem C Nanomater Interfaces; 2022 Mar; 126(12):5691-5700. PubMed ID: 35694697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-quality factor resonant dielectric metasurfaces based on hollow nanocuboids.
    Algorri JF; Zografopoulos DC; Ferraro A; García-Cámara B; Beccherelli R; Sánchez-Pena JM
    Opt Express; 2019 Mar; 27(5):6320-6330. PubMed ID: 30876219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization.
    Sakurai A; Yada K; Simomura T; Ju S; Kashiwagi M; Okada H; Nagao T; Tsuda K; Shiomi J
    ACS Cent Sci; 2019 Feb; 5(2):319-326. PubMed ID: 30834320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-dark resonances with antiferromagnetic order in silicon metasurfaces.
    Zografopoulos DC; Algorri JF; López-Higuera JM; Hernandez-Figueroa HE; Dmitriev V
    Sci Rep; 2022 Jul; 12(1):12975. PubMed ID: 35902597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical synthesis of high-Q bilayer all-dielectric metasurfaces with coupled resonance modes.
    Danaeifar M; Granpayeh N
    Appl Opt; 2022 Jan; 61(2):338-344. PubMed ID: 35200867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.