These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34014096)
1. Local Measure of Quantum Effects in Quantum Dynamics. Rassolov V; Garashchuk S J Phys Chem A; 2021 Jun; 125(21):4653-4667. PubMed ID: 34014096 [TBL] [Abstract][Full Text] [Related]
2. Bohmian dynamics on subspaces using linearized quantum force. Rassolov VA; Garashchuk S J Chem Phys; 2004 Apr; 120(15):6815-25. PubMed ID: 15267580 [TBL] [Abstract][Full Text] [Related]
3. Quantum dissipation in unbounded systems. Maddox JB; Bittner ER Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026143. PubMed ID: 11863623 [TBL] [Abstract][Full Text] [Related]
4. Quantum Trajectory Dynamics Based on Local Approximations to the Quantum Potential and Force. Garashchuk S; Rassolov V J Chem Theory Comput; 2019 Jul; 15(7):3906-3916. PubMed ID: 31125223 [TBL] [Abstract][Full Text] [Related]
5. Dynamics in the quantum/classical limit based on selective use of the quantum potential. Garashchuk S; Dell'Angelo D; Rassolov VA J Chem Phys; 2014 Dec; 141(23):234107. PubMed ID: 25527919 [TBL] [Abstract][Full Text] [Related]
6. Computation of correlation functions and wave function projections in the context of quantum trajectory dynamics. Garashchuk S J Chem Phys; 2007 Apr; 126(15):154104. PubMed ID: 17461611 [TBL] [Abstract][Full Text] [Related]
7. Stabilization of quantum energy flows within the approximate quantum trajectory approach. Garashchuk S; Rassolov V J Phys Chem A; 2007 Oct; 111(41):10251-5. PubMed ID: 17676720 [TBL] [Abstract][Full Text] [Related]
8. Energy conserving approximations to the quantum potential: dynamics with linearized quantum force. Garashchuk S; Rassolov VA J Chem Phys; 2004 Jan; 120(3):1181-90. PubMed ID: 15268241 [TBL] [Abstract][Full Text] [Related]
9. Classical characterization of quantum waves: comparison between the caustic and the zeros of the Madelung-Bohm potential. Espíndola-Ramos E; Silva-Ortigoza G; Sosa-Sánchez CT; Julián-Macías I; González-Juárez A; Cabrera-Rosas OJ; Ortega-Vidals P; Rickenstorff-Parrao C; Silva-Ortigoza R J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):303-312. PubMed ID: 33690458 [TBL] [Abstract][Full Text] [Related]
10. Incorporation of quantum effects for selected degrees of freedom into the trajectory-based dynamics using spatial domains. Garashchuk S; Volkov MV J Chem Phys; 2012 Aug; 137(7):074115. PubMed ID: 22920111 [TBL] [Abstract][Full Text] [Related]
11. Quantum trajectory analysis of multimode subsystem-bath dynamics. Wyatt RE; Na K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016702. PubMed ID: 11800815 [TBL] [Abstract][Full Text] [Related]
12. Complex quantum Hamilton-Jacobi equation with Bohmian trajectories: application to the photodissociation dynamics of NOCl. Chou CC J Chem Phys; 2014 Mar; 140(10):104307. PubMed ID: 24628169 [TBL] [Abstract][Full Text] [Related]
13. Exploring quantum non-locality with de Broglie-Bohm trajectories. Christov IP J Chem Phys; 2012 Jan; 136(3):034116. PubMed ID: 22280753 [TBL] [Abstract][Full Text] [Related]
14. Semiclassical quantization in Liouville space for vibrational dynamics. Gruenbaum SM; Loring RF J Phys Chem B; 2011 May; 115(18):5148-56. PubMed ID: 21375227 [TBL] [Abstract][Full Text] [Related]
15. Description of bound reactive dynamics within the approximate quantum trajectory framework. Garashchuk S J Phys Chem A; 2009 Apr; 113(16):4451-6. PubMed ID: 19290585 [TBL] [Abstract][Full Text] [Related]
16. Dividing line between quantum and classical trajectories in a measurement problem: Bohmian time constant. Nassar AB; Miret-Artés S Phys Rev Lett; 2013 Oct; 111(15):150401. PubMed ID: 24160580 [TBL] [Abstract][Full Text] [Related]
17. Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential. Garashchuk S J Chem Phys; 2010 Jan; 132(1):014112. PubMed ID: 20078154 [TBL] [Abstract][Full Text] [Related]
18. The Schrödinger equation with friction from the quantum trajectory perspective. Garashchuk S; Dixit V; Gu B; Mazzuca J J Chem Phys; 2013 Feb; 138(5):054107. PubMed ID: 23406098 [TBL] [Abstract][Full Text] [Related]
19. Bohmian Photonics for Independent Control of the Phase and Amplitude of Waves. Yu S; Piao X; Park N Phys Rev Lett; 2018 May; 120(19):193902. PubMed ID: 29799257 [TBL] [Abstract][Full Text] [Related]
20. Mapping quantum-classical Liouville equation: projectors and trajectories. Kelly A; van Zon R; Schofield J; Kapral R J Chem Phys; 2012 Feb; 136(8):084101. PubMed ID: 22380026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]