BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

826 related articles for article (PubMed ID: 34014657)

  • 1. Expanding the Rare-Earth Metal BINOLate Catalytic Multitool beyond Enantioselective Organic Synthesis.
    Panetti GB; Robinson JR; Schelter EJ; Walsh PJ
    Acc Chem Res; 2021 Jun; 54(11):2637-2648. PubMed ID: 34014657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis.
    Robinson JR; Gu J; Carroll PJ; Schelter EJ; Walsh PJ
    J Am Chem Soc; 2015 Jun; 137(22):7135-44. PubMed ID: 25968561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air- and water-tolerant rare earth guanidinium BINOLate complexes as practical precatalysts in multifunctional asymmetric catalysis.
    Robinson JR; Fan X; Yadav J; Carroll PJ; Wooten AJ; Pericàs MA; Schelter EJ; Walsh PJ
    J Am Chem Soc; 2014 Jun; 136(22):8034-41. PubMed ID: 24796452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into substrate binding in Shibasaki's Li3(THF)n(BINOLate)3Ln complexes and implications in catalysis.
    Wooten AJ; Carroll PJ; Walsh PJ
    J Am Chem Soc; 2008 Jun; 130(23):7407-19. PubMed ID: 18479140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning reactivity and electronic properties through ligand reorganization within a cerium heterobimetallic framework.
    Robinson JR; Gordon Z; Booth CH; Carroll PJ; Walsh PJ; Schelter EJ
    J Am Chem Soc; 2013 Dec; 135(50):19016-24. PubMed ID: 24274665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimeric rare-earth BINOLate complexes: activation of 1,4-benzoquinone through Lewis acid promoted potential shifts.
    Robinson JR; Booth CH; Carroll PJ; Walsh PJ; Schelter EJ
    Chemistry; 2013 May; 19(19):5996-6004. PubMed ID: 23495100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Na- and K-C pi-interactions on the structure and binding of M3(sol)n(BINOLate)3Ln catalysts.
    Wooten AJ; Carroll PJ; Walsh PJ
    Org Lett; 2007 Aug; 9(17):3359-62. PubMed ID: 17658838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline earth metal catalysts for asymmetric reactions.
    Kobayashi S; Yamashita Y
    Acc Chem Res; 2011 Jan; 44(1):58-71. PubMed ID: 20979379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of novel copper-rare earth BINOLate frameworks from a hydrogen bonding DBU-H rare earth BINOLate complex.
    Panetti GB; Robinson JR; Carroll PJ; Gau MR; Manor BC; Walsh PJ; Schelter EJ
    Dalton Trans; 2018 Oct; 47(41):14408-14410. PubMed ID: 30183038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of dynamic ligand exchange in the oxidation chemistry of cerium(iii).
    Robinson JR; Qiao Y; Gu J; Carroll PJ; Walsh PJ; Schelter EJ
    Chem Sci; 2016 Jul; 7(7):4537-4547. PubMed ID: 30155100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lanthanide Photocatalysis.
    Qiao Y; Schelter EJ
    Acc Chem Res; 2018 Nov; 51(11):2926-2936. PubMed ID: 30335356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction.
    Yamagiwa N; Qin H; Matsunaga S; Shibasaki M
    J Am Chem Soc; 2005 Sep; 127(38):13419-27. PubMed ID: 16173776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic asymmetric aza-Morita-Baylis-Hillman reaction of methyl acrylate: role of a bifunctional La(O-iPr)3/linked-BINOL complex.
    Yukawa T; Seelig B; Xu Y; Morimoto H; Matsunaga S; Berkessel A; Shibasaki M
    J Am Chem Soc; 2010 Sep; 132(34):11988-92. PubMed ID: 20690698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete divalent rare-earth cationic ROP catalysts: ligand-dependent redox behavior and discrepancies with alkaline-earth analogues in a ligand-assisted activated monomer mechanism.
    Liu B; Roisnel T; Maron L; Carpentier JF; Sarazin Y
    Chemistry; 2013 Mar; 19(12):3986-94. PubMed ID: 23386504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of anionic rare-earth metal amides stabilized by phenoxy-amido ligands and their catalytic behavior for the polymerization of lactide.
    Lu M; Yao Y; Zhang Y; Shen Q
    Dalton Trans; 2010 Oct; 39(40):9530-7. PubMed ID: 20820599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.
    Jones JS; Gabbaï FP
    Acc Chem Res; 2016 May; 49(5):857-67. PubMed ID: 27092722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond.
    Sun W; Sun Q
    Acc Chem Res; 2019 Aug; 52(8):2370-2381. PubMed ID: 31333021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of cerium oxidation state through metal complex secondary structures.
    Levin JR; Dorfner WL; Carroll PJ; Schelter EJ
    Chem Sci; 2015 Dec; 6(12):6925-6934. PubMed ID: 29861931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ProPhenol-catalyzed asymmetric additions by spontaneously assembled dinuclear main group metal complexes.
    Trost BM; Bartlett MJ
    Acc Chem Res; 2015 Mar; 48(3):688-701. PubMed ID: 25650587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.