BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

830 related articles for article (PubMed ID: 34014657)

  • 61. Development of atom-economical catalytic asymmetric reactions under proton transfer conditions: construction of tetrasubstituted stereogenic centers and their application to therapeutics.
    Kumagai N
    Chem Pharm Bull (Tokyo); 2011; 59(1):1-22. PubMed ID: 21212541
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dihydrogen addition in a dinuclear rare-earth metal hydride complex supported by a metalated TREN ligand.
    Venugopal A; Fegler W; Spaniol TP; Maron L; Okuda J
    J Am Chem Soc; 2011 Nov; 133(44):17574-7. PubMed ID: 21985245
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Factors Affecting Hydrogen Atom Transfer Reactivity of Metal-Oxo Porphyrinoid Complexes.
    Sacramento JJD; Goldberg DP
    Acc Chem Res; 2018 Nov; 51(11):2641-2652. PubMed ID: 30403479
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bio-inspired, Multifunctional Metal-Thiolate Motif: From Electron Transfer to Sulfur Reactivity and Small-Molecule Activation.
    Gennari M; Duboc C
    Acc Chem Res; 2020 Nov; 53(11):2753-2761. PubMed ID: 33074643
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural distortion by alkali metal cations modulates the redox and electronic properties of Ce
    Boggiano AC; Studvick CM; Steiner A; Bacsa J; Popov IA; La Pierre HS
    Chem Sci; 2023 Nov; 14(42):11708-11717. PubMed ID: 37920331
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Discrete, solvent-free alkaline-earth metal cations: metal···fluorine interactions and ROP catalytic activity.
    Sarazin Y; Liu B; Roisnel T; Maron L; Carpentier JF
    J Am Chem Soc; 2011 Jun; 133(23):9069-87. PubMed ID: 21545119
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Development and application of enantioselective Lewis acid-Lewis base bifunctional catalyst].
    Kanai M
    Yakugaku Zasshi; 2001 Dec; 121(12):949-60. PubMed ID: 11766408
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Catalytic enantioselective construction of tetrasubstituted carbons by self-assembled poly rare earth metal complexes.
    Shibasaki M; Kanai M
    Org Biomol Chem; 2007 Jul; 5(13):2027-39. PubMed ID: 17581645
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Indenylmetal Catalysis in Organic Synthesis.
    Trost BM; Ryan MC
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):2862-2879. PubMed ID: 27806434
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Key role of the Lewis base position in asymmetric bifunctional catalysis: design and evaluation of a new ligand for chiral polymetallic catalysts.
    Fujimori I; Mita T; Maki K; Shiro M; Sato A; Furusho S; Kanai M; Shibasaki M
    J Am Chem Soc; 2006 Dec; 128(51):16438-9. PubMed ID: 17177358
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals.
    Tomat E; Curtis CJ
    Acc Chem Res; 2021 Dec; 54(24):4584-4594. PubMed ID: 34870973
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes.
    Zhou S; Wu Z; Rong J; Wang S; Yang G; Zhu X; Zhang L
    Chemistry; 2012 Feb; 18(9):2653-9. PubMed ID: 22259029
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Rare Earth Metal Complexes of Bidentate Nitroxide Ligands: Synthesis and Electrochemistry.
    Kim JE; Bogart JA; Carroll PJ; Schelter EJ
    Inorg Chem; 2016 Jan; 55(2):775-84. PubMed ID: 26689656
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel mixed ligand coordination compounds of some rare earth metal cations containing acesulfamato/N,N-diethylnicotinamide.
    Zeybel L; Köse DA
    Turk J Chem; 2021; 45(4):1004-1015. PubMed ID: 34707430
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates.
    Zhang WX; Nishiura M; Hou Z
    Chemistry; 2007; 13(14):4037-51. PubMed ID: 17348047
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Lessons from isolable nickel(I) precursor complexes for small molecule activation.
    Yao S; Driess M
    Acc Chem Res; 2012 Feb; 45(2):276-87. PubMed ID: 21875073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.