BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34014662)

  • 1. Revealing Fatty Acid Heterogeneity in Staphylococcal Lipids with Isotope Labeling and RPLC-IM-MS.
    Freeman C; Hynds HM; Carpenter JM; Appala K; Bimpeh K; Barbarek S; Gatto C; Wilkinson BJ; Hines KM
    J Am Soc Mass Spectrom; 2021 Sep; 32(9):2376-2385. PubMed ID: 34014662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling of branched chain and straight chain saturated fatty acids by ultra-high performance liquid chromatography-mass spectrometry.
    Fu X; Hafza N; Götz F; Lämmerhofer M
    J Chromatogr A; 2023 Aug; 1703():464111. PubMed ID: 37262934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards enantioselective ultrahigh performance liquid chromatography-mass spectrometry-based metabolomics of branched-chain fatty acids and anteiso-fatty acids under reversed-phase conditions using sub-2-μm amylose- and cellulose-derived chiral stationary phases.
    Geibel C; Zhang L; Serafimov K; Gross H; Lämmerhofer M
    Chirality; 2022 Mar; 34(3):484-497. PubMed ID: 35032056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.
    Sen S; Sirobhushanam S; Johnson SR; Song Y; Tefft R; Gatto C; Wilkinson BJ
    PLoS One; 2016; 11(10):e0165300. PubMed ID: 27788193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the Sae Two-Component System by Branched-Chain Fatty Acids in Staphylococcus aureus.
    Pendleton A; Yeo WS; Alqahtani S; DiMaggio DA; Stone CJ; Li Z; Singh VK; Montgomery CP; Bae T; Brinsmade SR
    mBio; 2022 Oct; 13(5):e0147222. PubMed ID: 36135382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipidomic and Ultrastructural Characterization of the Cell Envelope of Staphylococcus aureus Grown in the Presence of Human Serum.
    Hines KM; Alvarado G; Chen X; Gatto C; Pokorny A; Alonzo F; Wilkinson BJ; Xu L
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32554713
    [No Abstract]   [Full Text] [Related]  

  • 7. In Staphylococcus aureus, the acyl-CoA synthetase MbcS supports branched-chain fatty acid synthesis from carboxylic acid and aldehyde precursors.
    Dos Santos Ferreira MC; Pendleton A; Yeo WS; Málaga Gadea FC; Camelo D; McGuire M; Brinsmade SR
    Mol Microbiol; 2024 May; 121(5):865-881. PubMed ID: 38366323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive study of serum odd- and branched-chain fatty acids in patients with excess weight.
    Mika A; Stepnowski P; Kaska L; Proczko M; Wisniewski P; Sledzinski M; Sledzinski T
    Obesity (Silver Spring); 2016 Aug; 24(8):1669-76. PubMed ID: 27355152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of pyruvate dehydrogenase and branched-chain α-keto acid dehydrogenase in branched-chain membrane fatty acid levels and associated functions in Staphylococcus aureus.
    Singh VK; Sirobhushanam S; Ring RP; Singh S; Gatto C; Wilkinson BJ
    J Med Microbiol; 2018 Apr; 67(4):570-578. PubMed ID: 29498620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective
    Freeman CD; Hansen T; Urbauer R; Wilkinson BJ; Singh VK; Hines KM
    mSphere; 2024 May; ():e0011524. PubMed ID: 38752757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).
    Jiang W; Jiang Y; Bentley GJ; Liu D; Xiao Y; Zhang F
    Biotechnol Bioeng; 2015 Aug; 112(8):1613-22. PubMed ID: 25788017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas Chromatography Chemical Ionization Mass Spectrometry and Tandem Mass Spectrometry for Identification and Straightforward Quantification of Branched Chain Fatty Acids in Foods.
    Wang DH; Wang Z; Brenna JT
    J Agric Food Chem; 2020 Apr; 68(17):4973-4980. PubMed ID: 32298092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the
    Tiwari KB; Gatto C; Wilkinson BJ
    Molecules; 2018 May; 23(5):. PubMed ID: 29772798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries.
    Randolph CE; Beveridge CH; Iyer S; Blanksby SJ; McLuckey SA; Chopra G
    J Am Soc Mass Spectrom; 2022 Nov; 33(11):2156-2164. PubMed ID: 36218280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precursor role of branched-chain amino acids in the biosynthesis of iso and anteiso fatty acids in rat skin.
    Oku H; Yagi N; Nagata J; Chinen I
    Biochim Biophys Acta; 1994 Oct; 1214(3):279-87. PubMed ID: 7918610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refining the Application of Microbial Lipids as Tracers of Staphylococcus aureus Growth Rates in Cystic Fibrosis Sputum.
    Neubauer C; Kasi AS; Grahl N; Sessions AL; Kopf SH; Kato R; Hogan DA; Newman DK
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30249710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and identification of diacylglycerols containing branched chain fatty acids by liquid chromatography-mass spectrometry.
    Palyzová A; Řezanka T
    J Chromatogr A; 2021 Jan; 1635():461708. PubMed ID: 33223151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Lipidomics Workflow for Improved Human Plasma Identification and Quantification Using RPLC-MSn Methods and Isotope Dilution Strategies.
    Rampler E; Criscuolo A; Zeller M; El Abiead Y; Schoeny H; Hermann G; Sokol E; Cook K; Peake DA; Delanghe B; Koellensperger G
    Anal Chem; 2018 Jun; 90(11):6494-6501. PubMed ID: 29708737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A short-chain acyl-CoA synthetase that supports branched-chain fatty acid synthesis in Staphylococcus aureus.
    Whaley SG; Frank MW; Rock CO
    J Biol Chem; 2023 Apr; 299(4):103036. PubMed ID: 36806679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-mediated variations in cellular membrane fatty acid composition of Staphylococcus aureus in resistance to pulsed electric fields.
    Wang LH; Wang MS; Zeng XA; Liu ZW
    Biochim Biophys Acta; 2016 Aug; 1858(8):1791-800. PubMed ID: 27155566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.