These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34014709)

  • 21. Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning.
    Franklin NT; Frank MJ
    PLoS Comput Biol; 2020 Apr; 16(4):e1007720. PubMed ID: 32282795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforcement learning with associative or discriminative generalization across states and actions: fMRI at 3 T and 7 T.
    Colas JT; Dundon NM; Gerraty RT; Saragosa-Harris NM; Szymula KP; Tanwisuth K; Tyszka JM; van Geen C; Ju H; Toga AW; Gold JI; Bassett DS; Hartley CA; Shohamy D; Grafton ST; O'Doherty JP
    Hum Brain Mapp; 2022 Oct; 43(15):4750-4790. PubMed ID: 35860954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novelty and Inductive Generalization in Human Reinforcement Learning.
    Gershman SJ; Niv Y
    Top Cogn Sci; 2015 Jul; 7(3):391-415. PubMed ID: 25808176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reward-predictive representations generalize across tasks in reinforcement learning.
    Lehnert L; Littman ML; Frank MJ
    PLoS Comput Biol; 2020 Oct; 16(10):e1008317. PubMed ID: 33057329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural signature of hierarchically structured expectations predicts clustering and transfer of rule sets in reinforcement learning.
    Collins AGE; Frank MJ
    Cognition; 2016 Jul; 152():160-169. PubMed ID: 27082659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.
    Badre D; Frank MJ
    Cereb Cortex; 2012 Mar; 22(3):527-36. PubMed ID: 21693491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linking confidence biases to reinforcement-learning processes.
    Salem-Garcia N; Palminteri S; Lebreton M
    Psychol Rev; 2023 Jul; 130(4):1017-1043. PubMed ID: 37155268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective.
    Botvinick MM; Niv Y; Barto AG
    Cognition; 2009 Dec; 113(3):262-280. PubMed ID: 18926527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical clustering optimizes the tradeoff between compositionality and expressivity of task structures for flexible reinforcement learning.
    Liu RG; Frank MJ
    Artif Intell; 2022 Nov; 312():. PubMed ID: 36711165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Navigating complex decision spaces: Problems and paradigms in sequential choice.
    Walsh MM; Anderson JR
    Psychol Bull; 2014 Mar; 140(2):466-86. PubMed ID: 23834192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. It's new, but is it good? How generalization and uncertainty guide the exploration of novel options.
    Stojić H; Schulz E; P Analytis P; Speekenbrink M
    J Exp Psychol Gen; 2020 Oct; 149(10):1878-1907. PubMed ID: 32191080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural circuits for learning context-dependent associations of stimuli.
    Zhu H; Paschalidis IC; Hasselmo ME
    Neural Netw; 2018 Nov; 107():48-60. PubMed ID: 30177226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structured, uncertainty-driven exploration in real-world consumer choice.
    Schulz E; Bhui R; Love BC; Brier B; Todd MT; Gershman SJ
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13903-13908. PubMed ID: 31235598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stochastic abstract policies: generalizing knowledge to improve reinforcement learning.
    Koga ML; Freire V; Costa AH
    IEEE Trans Cybern; 2015 Jan; 45(1):77-88. PubMed ID: 24835233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rule learning by rats.
    Murphy RA; Mondragón E; Murphy VA
    Science; 2008 Mar; 319(5871):1849-51. PubMed ID: 18369151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of memory in counterfactual valuation.
    Biderman N; Gershman SJ; Shohamy D
    J Exp Psychol Gen; 2023 Jun; 152(6):1754-1767. PubMed ID: 37199971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing declarative concept application: The utility of examples as primary targets of learning.
    Wissman KT; Zamary A; Rawson KA; Dunlosky J
    J Exp Psychol Appl; 2023 Jun; 29(2):341-357. PubMed ID: 35511552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Building integrated representations through interleaved learning.
    Zhou Z; Singh D; Tandoc MC; Schapiro AC
    J Exp Psychol Gen; 2023 Sep; 152(9):2666-2684. PubMed ID: 37227843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disentangling Abstraction from Statistical Pattern Matching in Human and Machine Learning.
    Kumar S; Dasgupta I; Daw ND; Cohen JD; Griffiths TL
    PLoS Comput Biol; 2023 Aug; 19(8):e1011316. PubMed ID: 37624841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.