These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34014826)

  • 21. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How adaptation, training, and customization contribute to benefits from exoskeleton assistance.
    Poggensee KL; Collins SH
    Sci Robot; 2021 Sep; 6(58):eabf1078. PubMed ID: 34586837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing Exoskeleton Assistance for Faster Self-Selected Walking.
    Song S; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():786-795. PubMed ID: 33877982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 May; 43(7):1401-7. PubMed ID: 20171638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users.
    Moltedo M; Baček T; Serrien B; Langlois K; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    J Neuroeng Rehabil; 2020 Jul; 17(1):98. PubMed ID: 32680539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy.
    Orekhov G; Fang Y; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):461-467. PubMed ID: 31940542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton.
    Wang X; Guo S; Qu H; Song M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons.
    Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH
    J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.
    Kinnaird CR; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):31-7. PubMed ID: 19211321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.
    Jackson RW; Dembia CL; Delp SL; Collins SH
    J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uphill walking with a simple exoskeleton: plantarflexion assistance leads to proximal adaptations.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2015 Jan; 41(1):246-51. PubMed ID: 25455436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the Energy Cost of Incline Walking and Stair Ascent With Ankle Exoskeleton Assistance in Cerebral Palsy.
    Fang Y; Orekhov G; Lerner ZF
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2143-2152. PubMed ID: 34941495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
    Takahashi KZ; Lewek MD; Sawicki GS
    J Neuroeng Rehabil; 2015 Feb; 12():23. PubMed ID: 25889283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy.
    Lerner ZF; Harvey TA; Lawson JL
    Ann Biomed Eng; 2019 Jun; 47(6):1345-1356. PubMed ID: 30825030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy.
    Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton.
    Kantharaju P; Jeong H; Ramadurai S; Jacobson M; Jeong H; Kim M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1786-1795. PubMed ID: 35759579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feasibility of Augmenting Ankle Exoskeleton Walking Performance With Step Length Biofeedback in Individuals With Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():442-449. PubMed ID: 33523814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle recruitment and coordination with an ankle exoskeleton.
    Steele KM; Jackson RW; Shuman BR; Collins SH
    J Biomech; 2017 Jul; 59():50-58. PubMed ID: 28623037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.