These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34014831)
21. COVID-19 Vaccine Hesitancy on Social Media: Building a Public Twitter Data Set of Antivaccine Content, Vaccine Misinformation, and Conspiracies. Muric G; Wu Y; Ferrara E JMIR Public Health Surveill; 2021 Nov; 7(11):e30642. PubMed ID: 34653016 [TBL] [Abstract][Full Text] [Related]
22. Language and Sentiment Regarding Telemedicine and COVID-19 on Twitter: Longitudinal Infodemiology Study. Pollack CC; Gilbert-Diamond D; Alford-Teaster JA; Onega T J Med Internet Res; 2021 Jun; 23(6):e28648. PubMed ID: 34086591 [TBL] [Abstract][Full Text] [Related]
23. Political polarization drives online conversations about COVID-19 in the United States. Jiang J; Chen E; Yan S; Lerman K; Ferrara E Hum Behav Emerg Technol; 2020 Jul; 2(3):200-211. PubMed ID: 32838229 [TBL] [Abstract][Full Text] [Related]
24. Perceived risk, political polarization, and the willingness to follow COVID-19 mitigation guidelines. Block R; Burnham M; Kahn K; Peng R; Seeman J; Seto C Soc Sci Med; 2022 Jul; 305():115091. PubMed ID: 35690035 [TBL] [Abstract][Full Text] [Related]
25. Monitoring User Opinions and Side Effects on COVID-19 Vaccines in the Twittersphere: Infodemiology Study of Tweets. Portelli B; Scaboro S; Tonino R; Chersoni E; Santus E; Serra G J Med Internet Res; 2022 May; 24(5):e35115. PubMed ID: 35446781 [TBL] [Abstract][Full Text] [Related]
26. Electronic Cigarette Users' Perspective on the COVID-19 Pandemic: Observational Study Using Twitter Data. Gao Y; Xie Z; Li D JMIR Public Health Surveill; 2021 Jan; 7(1):e24859. PubMed ID: 33347422 [TBL] [Abstract][Full Text] [Related]
27. COVID-19 Discourse on Twitter in Four Asian Countries: Case Study of Risk Communication. Park S; Han S; Kim J; Molaie MM; Vu HD; Singh K; Han J; Lee W; Cha M J Med Internet Res; 2021 Mar; 23(3):e23272. PubMed ID: 33684054 [TBL] [Abstract][Full Text] [Related]
28. Emergency Physician Twitter Use in the COVID-19 Pandemic as a Potential Predictor of Impending Surge: Retrospective Observational Study. Margus C; Brown N; Hertelendy AJ; Safferman MR; Hart A; Ciottone GR J Med Internet Res; 2021 Jul; 23(7):e28615. PubMed ID: 34081612 [TBL] [Abstract][Full Text] [Related]
29. Cross-Platform Comparative Study of Public Concern on Social Media during the COVID-19 Pandemic: An Empirical Study Based on Twitter and Weibo. Deng W; Yang Y Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34208483 [TBL] [Abstract][Full Text] [Related]
30. Assessing the Role of Social Bots During the COVID-19 Pandemic: Infodemic, Disagreement, and Criticism. Suarez-Lledo V; Alvarez-Galvez J J Med Internet Res; 2022 Aug; 24(8):e36085. PubMed ID: 35839385 [TBL] [Abstract][Full Text] [Related]
31. Characterization of Vaccine Tweets During the Early Stage of the COVID-19 Outbreak in the United States: Topic Modeling Analysis. Jiang LC; Chu TH; Sun M JMIR Infodemiology; 2021; 1(1):e25636. PubMed ID: 34604707 [TBL] [Abstract][Full Text] [Related]
32. Investigating political polarization in India through the lens of Twitter. Borah A; Singh SR Soc Netw Anal Min; 2022; 12(1):97. PubMed ID: 35937771 [TBL] [Abstract][Full Text] [Related]
33. Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea. Park HW; Park S; Chong M J Med Internet Res; 2020 May; 22(5):e18897. PubMed ID: 32325426 [TBL] [Abstract][Full Text] [Related]
34. Change in Threads on Twitter Regarding Influenza, Vaccines, and Vaccination During the COVID-19 Pandemic: Artificial Intelligence-Based Infodemiology Study. Benis A; Chatsubi A; Levner E; Ashkenazi S JMIR Infodemiology; 2021; 1(1):e31983. PubMed ID: 34693212 [TBL] [Abstract][Full Text] [Related]
35. Public Perceptions and Attitudes Toward COVID-19 Nonpharmaceutical Interventions Across Six Countries: A Topic Modeling Analysis of Twitter Data. Doogan C; Buntine W; Linger H; Brunt S J Med Internet Res; 2020 Sep; 22(9):e21419. PubMed ID: 32784190 [TBL] [Abstract][Full Text] [Related]
36. Emotions and Topics Expressed on Twitter During the COVID-19 Pandemic in the United Kingdom: Comparative Geolocation and Text Mining Analysis. Alhuzali H; Zhang T; Ananiadou S J Med Internet Res; 2022 Oct; 24(10):e40323. PubMed ID: 36150046 [TBL] [Abstract][Full Text] [Related]
37. Social Media Insights Into US Mental Health During the COVID-19 Pandemic: Longitudinal Analysis of Twitter Data. Valdez D; Ten Thij M; Bathina K; Rutter LA; Bollen J J Med Internet Res; 2020 Dec; 22(12):e21418. PubMed ID: 33284783 [TBL] [Abstract][Full Text] [Related]
38. Big Data, Natural Language Processing, and Deep Learning to Detect and Characterize Illicit COVID-19 Product Sales: Infoveillance Study on Twitter and Instagram. Mackey TK; Li J; Purushothaman V; Nali M; Shah N; Bardier C; Cai M; Liang B JMIR Public Health Surveill; 2020 Aug; 6(3):e20794. PubMed ID: 32750006 [TBL] [Abstract][Full Text] [Related]
39. Changes in Public Response Associated With Various COVID-19 Restrictions in Ontario, Canada: Observational Infoveillance Study Using Social Media Time Series Data. Chum A; Nielsen A; Bellows Z; Farrell E; Durette PN; Banda JM; Cupchik G J Med Internet Res; 2021 Aug; 23(8):e28716. PubMed ID: 34227996 [TBL] [Abstract][Full Text] [Related]
40. From science to politics: COVID-19 information fatigue on YouTube. Shi CF; So MC; Stelmach S; Earn A; Earn DJD; Dushoff J BMC Public Health; 2022 Apr; 22(1):816. PubMed ID: 35461254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]