These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 34015146)

  • 41. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
    Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA
    Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.
    Forsgren E; Edlund C; Oliver M; Barnes K; Sjögren R; Jackson TR
    PLoS One; 2022; 17(5):e0264241. PubMed ID: 35588399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unleashing Optics and Optoacoustics for Developmental Biology.
    Ripoll J; Koberstein-Schwarz B; Ntziachristos V
    Trends Biotechnol; 2015 Nov; 33(11):679-691. PubMed ID: 26435161
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical techniques for the endoscopic detection of dysplastic colonic lesions.
    DaCosta RS; Wilson BC; Marcon NE
    Curr Opin Gastroenterol; 2005 Jan; 21(1):70-9. PubMed ID: 15687888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping.
    Qin Z; She Z; Chen C; Wu W; Lau JKY; Ip NY; Qu JY
    Nat Biotechnol; 2022 Nov; 40(11):1663-1671. PubMed ID: 35697805
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoacoustic imaging aided with deep learning: a review.
    Rajendran P; Sharma A; Pramanik M
    Biomed Eng Lett; 2022 May; 12(2):155-173. PubMed ID: 35529338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna.
    Hitzenberger CK; Drexler W; Leitgeb RA; Findl O; Fercher AF
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT460-74. PubMed ID: 27409506
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microparticle-Based Biochemical Sensing Using Optical Coherence Tomography and Deep Learning.
    Shah S; Yu CN; Zheng M; Kim H; Eggleston MS
    ACS Nano; 2021 Jun; 15(6):9764-9774. PubMed ID: 33961739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computer-Aided Diagnosis of Label-Free 3-D Optical Coherence Microscopy Images of Human Cervical Tissue.
    Ma Y; Xu T; Huang X; Wang X; Li C; Jerwick J; Ning Y; Zeng X; Wang B; Wang Y; Zhang Z; Zhang X; Zhou C
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2447-2456. PubMed ID: 30605087
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methods and applications of full-field optical coherence tomography: a review.
    Wang L; Fu R; Xu C; Xu M
    J Biomed Opt; 2022 May; 27(5):. PubMed ID: 35596250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications.
    Nizam NI; Ochoa M; Smith JT; Gao S; Intes X
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35484688
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models.
    Macdonald C; Arridge S; Powell S
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32798354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep Learning in Microscopy Image Analysis: A Survey.
    Fuyong Xing ; Yuanpu Xie ; Hai Su ; Fujun Liu ; Lin Yang
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4550-4568. PubMed ID: 29989994
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simple and Robust Deep Learning Approach for Fast Fluorescence Lifetime Imaging.
    Wang Q; Li Y; Xiao D; Zang Z; Jiao Z; Chen Y; Li DDU
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-contact biomedical photoacoustic and ultrasound imaging.
    Rousseau G; Gauthier B; Blouin A; Monchalin JP
    J Biomed Opt; 2012 Jun; 17(6):061217. PubMed ID: 22734747
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biophotonics methods for functional monitoring of complications of diabetes mellitus.
    Zharkikh E; Dremin V; Zherebtsov E; Dunaev A; Meglinski I
    J Biophotonics; 2020 Oct; 13(10):e202000203. PubMed ID: 32654427
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deep learning alignment of bidirectional raster scanning in high speed photoacoustic microscopy.
    Kim J; Lee D; Lim H; Yang H; Kim J; Kim J; Kim Y; Kim HH; Kim C
    Sci Rep; 2022 Sep; 12(1):16238. PubMed ID: 36171249
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images.
    Lin M; Bao G; Sang X; Wu Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040
    [TBL] [Abstract][Full Text] [Related]  

  • 59. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.
    Lin H; Kao MC; Lai CM; Huang JC; Kuo WC
    J Biomed Opt; 2014 Feb; 19(2):21110. PubMed ID: 24084890
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoacoustic imaging with limited sampling: a review of machine learning approaches.
    Wang R; Zhu J; Xia J; Yao J; Shi J; Li C
    Biomed Opt Express; 2023 Apr; 14(4):1777-1799. PubMed ID: 37078052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.