These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86. Characterization of site-specific O-glycan structures within the mucin-like domain of alpha-dystroglycan from human skeletal muscle. Nilsson J; Nilsson J; Larson G; Grahn A Glycobiology; 2010 Sep; 20(9):1160-9. PubMed ID: 20507882 [TBL] [Abstract][Full Text] [Related]
87. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. Orellana A; Moraga C; Araya M; Moreno A J Mol Biol; 2016 Aug; 428(16):3150-3165. PubMed ID: 27261257 [TBL] [Abstract][Full Text] [Related]
88. Reconstitution into proteoliposomes and partial purification of the Golgi apparatus membrane UDP-galactose, UDP-xylose, and UDP-glucuronic acid transport activities. Milla ME; Clairmont CA; Hirschberg CB J Biol Chem; 1992 Jan; 267(1):103-7. PubMed ID: 1730575 [TBL] [Abstract][Full Text] [Related]
89. Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. Patnaik SK; Stanley P J Biol Chem; 2005 May; 280(21):20851-9. PubMed ID: 15788414 [TBL] [Abstract][Full Text] [Related]
90. Membrane topology of the mammalian CMP-sialic acid transporter. Eckhardt M; Gotza B; Gerardy-Schahn R J Biol Chem; 1999 Mar; 274(13):8779-87. PubMed ID: 10085119 [TBL] [Abstract][Full Text] [Related]
91. HNK-1 sulfotransferase-dependent sulfation regulating laminin-binding glycans occurs in the post-phosphoryl moiety on α-dystroglycan. Nakagawa N; Takematsu H; Oka S Glycobiology; 2013 Sep; 23(9):1066-74. PubMed ID: 23723439 [TBL] [Abstract][Full Text] [Related]
92. Biosynthetic Mechanisms and Biological Significance of Glycerol Phosphate-Containing Glycan in Mammals. Imae R; Manya H; Endo T Molecules; 2021 Nov; 26(21):. PubMed ID: 34771084 [TBL] [Abstract][Full Text] [Related]
93. The transporters SLC35A1 and SLC30A1 play opposite roles in cell survival upon VSV virus infection. Moskovskich A; Goldmann U; Kartnig F; Lindinger S; Konecka J; Fiume G; Girardi E; Superti-Furga G Sci Rep; 2019 Jul; 9(1):10471. PubMed ID: 31320712 [TBL] [Abstract][Full Text] [Related]
95. Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation. Jedrzejewski PM; del Val IJ; Constantinou A; Dell A; Haslam SM; Polizzi KM; Kontoravdi C Int J Mol Sci; 2014 Mar; 15(3):4492-522. PubMed ID: 24637934 [TBL] [Abstract][Full Text] [Related]
96. Ribitol alters multiple metabolic pathways of central carbon metabolism with enhanced glycolysis: A metabolomics and transcriptomics profiling of breast cancer. Tucker JD; Doddapaneni R; Lu PJ; Lu QL PLoS One; 2022; 17(12):e0278711. PubMed ID: 36477459 [TBL] [Abstract][Full Text] [Related]
97. An integrated modular framework for modeling the effect of ammonium on the sialylation process of monoclonal antibodies produced by CHO cells. Savizi ISP; Motamedian E; E Lewis N; Jimenez Del Val I; Shojaosadati SA Biotechnol J; 2021 Aug; 16(8):e2100019. PubMed ID: 34021707 [TBL] [Abstract][Full Text] [Related]
98. Retinal Proteomics of a Mouse Model of Dystroglycanopathies Reveals Molecular Alterations in Photoreceptors. Uribe ML; Martín-Nieto J; Quereda C; Rubio-Fernández M; Cruces J; Janssen GMC; de Ru AH; van Veelen PA; Hensbergen PJ J Proteome Res; 2021 Jun; 20(6):3268-3277. PubMed ID: 34027671 [TBL] [Abstract][Full Text] [Related]
99. NPC1 regulates the distribution of phosphatidylinositol 4-kinases at Golgi and lysosomal membranes. Kutchukian C; Vivas O; Casas M; Jones JG; Tiscione SA; Simó S; Ory DS; Dixon RE; Dickson EJ EMBO J; 2021 Jul; 40(13):e105990. PubMed ID: 34019311 [TBL] [Abstract][Full Text] [Related]