BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34015424)

  • 1. Bioactivation of estragole and anethole leads to common adducts in DNA and hemoglobin.
    Bergau N; Herfurth UM; Sachse B; Abraham K; Monien BH
    Food Chem Toxicol; 2021 Jul; 153():112253. PubMed ID: 34015424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of
    Monien BH; Sachse B; Niederwieser B; Abraham K
    Chem Res Toxicol; 2019 Nov; 32(11):2260-2267. PubMed ID: 31565931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the metabolism of estragole in humans consuming fennel tea.
    Zeller A; Horst K; Rychlik M
    Chem Res Toxicol; 2009 Dec; 22(12):1929-37. PubMed ID: 19908891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous quantification of eight hemoglobin adducts of genotoxic substances by isotope-dilution UHPLC-MS/MS.
    Gauch F; Abraham K; Monien BH
    Anal Bioanal Chem; 2022 Aug; 414(19):5805-5815. PubMed ID: 35655100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estragole: DNA adduct formation in primary rat hepatocytes and genotoxic potential in HepG2-CYP1A2 cells.
    Schulte-Hubbert R; Küpper JH; Thomas AD; Schrenk D
    Toxicology; 2020 Nov; 444():152566. PubMed ID: 32853702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular levels and molecular dynamics simulations of estragole DNA adducts point at inefficient repair resulting from limited distortion of the double-stranded DNA helix.
    Yang S; Diem M; Liu JDH; Wesseling S; Vervoort J; Oostenbrink C; Rietjens IMCM
    Arch Toxicol; 2020 Apr; 94(4):1349-1365. PubMed ID: 32185416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and quantification of specific DNA adducts by liquid chromatography-tandem mass spectrometry in the livers of rats given estragole at the carcinogenic dose.
    Ishii Y; Suzuki Y; Hibi D; Jin M; Fukuhara K; Umemura T; Nishikawa A
    Chem Res Toxicol; 2011 Apr; 24(4):532-41. PubMed ID: 21384859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect.
    Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro toxicity evaluation of estragole-containing preparations derived from Foeniculum vulgare Mill. (fennel) on HepG2 cells.
    Levorato S; Dominici L; Fatigoni C; Zadra C; Pagiotti R; Moretti M; Villarini M
    Food Chem Toxicol; 2018 Jan; 111():616-622. PubMed ID: 29233689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estragole: a weak direct-acting food-borne genotoxin and potential carcinogen.
    Martins C; Cação R; Cole KJ; Phillips DH; Laires A; Rueff J; Rodrigues AS
    Mutat Res; 2012 Aug; 747(1):86-92. PubMed ID: 22561883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hemoglobin adduct as a biomarker for the internal exposure to the rodent carcinogen furfuryl alcohol.
    Sachse B; Hielscher J; Lampen A; Abraham K; Monien BH
    Arch Toxicol; 2017 Dec; 91(12):3843-3855. PubMed ID: 28597227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of estragole in fennel herbal teas: implications on the assessment of dietary exposure to estragole.
    Raffo A; Nicoli S; Leclercq C
    Food Chem Toxicol; 2011 Feb; 49(2):370-5. PubMed ID: 21094197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fennel tea: risk assessment of the phytogenic monosubstance estragole in comparison to the natural multicomponent mixture].
    Iten F; Saller R
    Forsch Komplementarmed Klass Naturheilkd; 2004 Apr; 11(2):104-8. PubMed ID: 15138375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical analysis of estragole in fennel based teas and associated safety assessment using the Margin of Exposure (MOE) approach.
    van den Berg SJ; Alhusainy W; Restani P; Rietjens IM
    Food Chem Toxicol; 2014 Mar; 65():147-54. PubMed ID: 24384409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling.
    Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM
    Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Character impact odorants of fennel fruits and fennel tea.
    Zeller A; Rychlik M
    J Agric Food Chem; 2006 May; 54(10):3686-92. PubMed ID: 19127745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the hydroxylation of estragole via human liver cytochrome P450.
    Yadav R; Awasthi N; Shukla A; Kumar D
    J Mol Model; 2021 Jun; 27(7):199. PubMed ID: 34117581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in silico study on consequences of combined exposure to the food-borne alkenylbenzenes estragole and safrole.
    Yang S; Kawai T; Wesseling S; Rietjens IMCM
    Toxicol In Vitro; 2022 Mar; 79():105290. PubMed ID: 34861381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genotoxic potential in vitro and in vivo of the allyl benzene etheric oils estragole, basil oil and trans-anethole.
    Müller L; Kasper P; Müller-Tegethoff K; Petr T
    Mutat Res; 1994 Dec; 325(4):129-36. PubMed ID: 7527904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound-assisted temperature-controlled ionic-liquid dispersive liquid-phase microextraction method for simultaneous determination of anethole, estragole, and para-anisaldehyde in different plant extracts and human urine: a comparative study.
    Rajabi M; Haji-Esfandiari S; Barfi B; Ghanbari H
    Anal Bioanal Chem; 2014 Jul; 406(18):4501-12. PubMed ID: 24817361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.