These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34015599)

  • 1. Machine learning approaches to surrogate multifidelity Growth and Remodeling models for efficient abdominal aortic aneurysmal applications.
    Jiang Z; Choi J; Baek S
    Comput Biol Med; 2021 Jun; 133():104394. PubMed ID: 34015599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models.
    Molléro R; Pennec X; Delingette H; Garny A; Ayache N; Sermesant M
    Biomech Model Mechanobiol; 2018 Feb; 17(1):285-300. PubMed ID: 28894984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MLAGO: machine learning-aided global optimization for Michaelis constant estimation of kinetic modeling.
    Maeda K; Hatae A; Sakai Y; Boogerd FC; Kurata H
    BMC Bioinformatics; 2022 Nov; 23(1):455. PubMed ID: 36319952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting abdominal aortic aneurysm growth using patient-oriented growth models with two-step Bayesian inference.
    Akkoyun E; Kwon ST; Acar AC; Lee W; Baek S
    Comput Biol Med; 2020 Feb; 117():103620. PubMed ID: 32072970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifidelity computing for coupling full and reduced order models.
    Ahmed SE; San O; Kara K; Younis R; Rasheed A
    PLoS One; 2021; 16(2):e0246092. PubMed ID: 33571229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine.
    Farsad M; Zeinali-Davarani S; Choi J; Baek S
    J Biomech Eng; 2015 Sep; 137(9):0910081-09100812. PubMed ID: 26158885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration.
    Zhang L; Jiang Z; Choi J; Lim CY; Maiti T; Baek S
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2537-2550. PubMed ID: 30714936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.
    Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H
    Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collaborative Multifidelity-Based Surrogate Models for Genetic Programming in Dynamic Flexible Job Shop Scheduling.
    Zhang F; Mei Y; Nguyen S; Zhang M
    IEEE Trans Cybern; 2022 Aug; 52(8):8142-8156. PubMed ID: 33531323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive Kriging surrogate method for efficient joint estimation of hydraulic and biochemical parameters in reactive transport modeling.
    Zhou J; Su X; Cui G
    J Contam Hydrol; 2018 Sep; 216():50-57. PubMed ID: 30170768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of parameters for cardiovascular models with application to arterial growth.
    Kehl S; Gee MW
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27501849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm.
    Liang L; Liu M; Martin C; Elefteriades JA; Sun W
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1519-1533. PubMed ID: 28386685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Classification Analysis of Abdominal Aortic Aneurysms by Machine Learning Algorithms.
    Rengarajan B; Wu W; Wiedner C; Ko D; Muluk SC; Eskandari MK; Menon PG; Finol EA
    Ann Biomed Eng; 2020 Apr; 48(4):1419-1429. PubMed ID: 31980998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of abdominal aortic aneurysm growth by artificial intelligence taking into account clinical, biologic, morphologic, and biomechanical variables.
    Kontopodis N; Klontzas M; Tzirakis K; Charalambous S; Marias K; Tsetis D; Karantanas A; Ioannou CV
    Vascular; 2023 Jun; 31(3):409-416. PubMed ID: 35687809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Approach for Predicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid Bifurcation Models.
    Jordanski M; Radovic M; Milosevic Z; Filipovic N; Obradovic Z
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):537-544. PubMed ID: 28113333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency murine ultrasound provides enhanced metrics of BAPN-induced AAA growth.
    Romary DJ; Berman AG; Goergen CJ
    Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H981-H990. PubMed ID: 31559828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach for local abdominal aortic aneurysm growth quantification.
    Metaxa E; Iordanov I; Maravelakis E; Papaharilaou Y
    Med Biol Eng Comput; 2017 Aug; 55(8):1277-1286. PubMed ID: 27817042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning for detection of stenoses and aneurysms: application in a physiologically realistic virtual patient database.
    Jones G; Parr J; Nithiarasu P; Pant S
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2097-2146. PubMed ID: 34333696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.