These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
617 related articles for article (PubMed ID: 34015757)
1. Feature selection and machine learning methods for optimal identification and prediction of subtypes in Parkinson's disease. Salmanpour MR; Shamsaei M; Rahmim A Comput Methods Programs Biomed; 2021 Jul; 206():106131. PubMed ID: 34015757 [TBL] [Abstract][Full Text] [Related]
2. Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning. Salmanpour MR; Shamsaei M; Saberi A; Hajianfar G; Soltanian-Zadeh H; Rahmim A Comput Biol Med; 2021 Feb; 129():104142. PubMed ID: 33260101 [TBL] [Abstract][Full Text] [Related]
3. Longitudinal clustering analysis and prediction of Parkinson's disease progression using radiomics and hybrid machine learning. Salmanpour MR; Shamsaei M; Hajianfar G; Soltanian-Zadeh H; Rahmim A Quant Imaging Med Surg; 2022 Feb; 12(2):906-919. PubMed ID: 35111593 [TBL] [Abstract][Full Text] [Related]
4. Application of novel hybrid machine learning systems and radiomics features for non-motor outcome prediction in Parkinson's disease. Salmanpour MR; Bakhtiyari M; Hosseinzadeh M; Maghsudi M; Yousefirizi F; Ghaemi MM; Rahmim A Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36595257 [No Abstract] [Full Text] [Related]
5. Machine learning methods for optimal prediction of motor outcome in Parkinson's disease. Salmanpour MR; Shamsaei M; Saberi A; Klyuzhin IS; Tang J; Sossi V; Rahmim A Phys Med; 2020 Jan; 69():233-240. PubMed ID: 31918375 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Parkinson's disease pathogenic variants using hybrid Machine learning systems and radiomic features. Hajianfar G; Kalayinia S; Hosseinzadeh M; Samanian S; Maleki M; Sossi V; Rahmim A; Salmanpour MR Phys Med; 2023 Sep; 113():102647. PubMed ID: 37579523 [TBL] [Abstract][Full Text] [Related]
7. Artificial Neural Network-Based Prediction of Outcome in Parkinson's Disease Patients Using DaTscan SPECT Imaging Features. Tang J; Yang B; Adams MP; Shenkov NN; Klyuzhin IS; Fotouhi S; Davoodi-Bojd E; Lu L; Soltanian-Zadeh H; Sossi V; Rahmim A Mol Imaging Biol; 2019 Dec; 21(6):1165-1173. PubMed ID: 30847821 [TBL] [Abstract][Full Text] [Related]
8. Optimized machine learning methods for prediction of cognitive outcome in Parkinson's disease. Salmanpour MR; Shamsaei M; Saberi A; Setayeshi S; Klyuzhin IS; Sossi V; Rahmim A Comput Biol Med; 2019 Aug; 111():103347. PubMed ID: 31284154 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Cognitive Decline in Parkinson's Disease Using Clinical and DAT SPECT Imaging Features, and Hybrid Machine Learning Systems. Hosseinzadeh M; Gorji A; Fathi Jouzdani A; Rezaeijo SM; Rahmim A; Salmanpour MR Diagnostics (Basel); 2023 May; 13(10):. PubMed ID: 37238175 [TBL] [Abstract][Full Text] [Related]
10. Multi-modality radiomics of conventional T1 weighted and diffusion tensor imaging for differentiating Parkinson's disease motor subtypes in early-stages. Panahi M; Hosseini MS Sci Rep; 2024 Sep; 14(1):20708. PubMed ID: 39237644 [TBL] [Abstract][Full Text] [Related]
11. Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson's disease. Junaid M; Ali S; Eid F; El-Sappagh S; Abuhmed T Comput Methods Programs Biomed; 2023 Jun; 234():107495. PubMed ID: 37003039 [TBL] [Abstract][Full Text] [Related]
12. Joint feature-sample selection and robust diagnosis of Parkinson's disease from MRI data. Adeli E; Shi F; An L; Wee CY; Wu G; Wang T; Shen D Neuroimage; 2016 Nov; 141():206-219. PubMed ID: 27296013 [TBL] [Abstract][Full Text] [Related]
13. Radiomics and Hybrid Models Based on Machine Learning to Predict Levodopa-Induced Dyskinesia of Parkinson's Disease in the First 6 Years of Levodopa Treatment. Luo Y; Chen H; Gui M Diagnostics (Basel); 2023 Jul; 13(15):. PubMed ID: 37568874 [TBL] [Abstract][Full Text] [Related]
14. Phenotyping the Histopathological Subtypes of Non-Small-Cell Lung Carcinoma: How Beneficial Is Radiomics? Pasini G; Stefano A; Russo G; Comelli A; Marinozzi F; Bini F Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980475 [TBL] [Abstract][Full Text] [Related]
15. Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models. Jalali-Najafabadi F; Stadler M; Dand N; Jadon D; Soomro M; Ho P; Marzo-Ortega H; Helliwell P; Korendowych E; Simpson MA; Packham J; Smith CH; Barker JN; McHugh N; Warren RB; Barton A; Bowes J; ; Sci Rep; 2021 Dec; 11(1):23335. PubMed ID: 34857774 [TBL] [Abstract][Full Text] [Related]
16. Predicting the progression of Parkinson's disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole-brain white matter. Shu ZY; Cui SJ; Wu X; Xu Y; Huang P; Pang PP; Zhang M Magn Reson Med; 2021 Mar; 85(3):1611-1624. PubMed ID: 33017475 [TBL] [Abstract][Full Text] [Related]
18. Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI. Pang H; Yu Z; Yu H; Cao J; Li Y; Guo M; Cao C; Fan G Parkinsonism Relat Disord; 2021 Sep; 90():65-72. PubMed ID: 34399160 [TBL] [Abstract][Full Text] [Related]
19. Improved motor outcome prediction in Parkinson's disease applying deep learning to DaTscan SPECT images. Adams MP; Rahmim A; Tang J Comput Biol Med; 2021 May; 132():104312. PubMed ID: 33892414 [TBL] [Abstract][Full Text] [Related]
20. Radiomics incorporating deep features for predicting Parkinson's disease in Jiang H; Du Y; Lu Z; Wang B; Zhao Y; Wang R; Zhang H; Mok GSP EJNMMI Phys; 2024 Jul; 11(1):60. PubMed ID: 38985382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]