These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34015769)

  • 41. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study.
    Xu J; Shepherd RK; Millard RE; Clark GM
    Hear Res; 1997 Mar; 105(1-2):1-29. PubMed ID: 9083801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advanced electrochemical potential monitoring for improved understanding of electrical neurostimulation protocols.
    Doering M; Kieninger J; Kübler J; Hofmann UG; Rupitsch SJ; Urban GA; Weltin A
    J Neural Eng; 2023 Jun; 20(3):. PubMed ID: 37307808
    [No Abstract]   [Full Text] [Related]  

  • 44. The Active Electrode in the Living Brain: The Response of the Brain Parenchyma to Chronically Implanted Deep Brain Stimulation Electrodes.
    Evers J; Lowery M
    Oper Neurosurg (Hagerstown); 2021 Jan; 20(2):131-140. PubMed ID: 33074305
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved chronic neural stimulation using high surface area platinum electrodes.
    Shah KG; Tolosa VM; Tooker AC; Felix SH; Pannu SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1546-9. PubMed ID: 24109995
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling the Impact of Electrode/Tissue Geometry on Electrical Stimulation in Stereo-EEG.
    Shindhelm AC; Thio BJ; Sinha SR
    J Clin Neurophysiol; 2023 May; 40(4):339-349. PubMed ID: 34482315
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crosstalk current measurements using multi-electrode arrays in saline.
    Tran N; Halpern M; Bai S; Skafidas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3021-4. PubMed ID: 23366561
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biophysical modeling of the electric field magnitude and distribution induced by electrical stimulation with intracerebral electrodes.
    Alonso F; Mercadal B; Salvador R; Ruffini G; Bartolomei F; Wendling F; Modolo J
    Biomed Phys Eng Express; 2023 Jun; 9(4):. PubMed ID: 37160106
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An economical and convenient experiment setup for electrode investigation.
    Aryan NP; Rieger V; Brendler C; Rothermel A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():815-8. PubMed ID: 23366017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.
    Rizzo JF; Wyatt J; Loewenstein J; Kelly S; Shire D
    Invest Ophthalmol Vis Sci; 2003 Dec; 44(12):5355-61. PubMed ID: 14638738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigating the safety of fast neural electrical impedance tomography in the rat brain.
    Hannan S; Faulkner M; Aristovich K; Avery J; Holder D
    Physiol Meas; 2019 Apr; 40(3):034003. PubMed ID: 30840933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A voltage-controlled current source with regulated electrode bias-voltage for safe neural stimulation.
    Schuettler M; Franke M; Krueger TB; Stieglitz T
    J Neurosci Methods; 2008 Jun; 171(2):248-52. PubMed ID: 18471890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computationally optimized ECoG stimulation with local safety constraints.
    Guler S; Dannhauer M; Roig-Solvas B; Gkogkidis A; Macleod R; Ball T; Ojemann JG; Brooks DH
    Neuroimage; 2018 Jun; 173():35-48. PubMed ID: 29427847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impedance spectroscopy of tripolar concentric ring electrodes with Ten20 and TD246 pastes.
    Nasrollaholhosseini SH; Herrera DS; Besio WG
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2426-2429. PubMed ID: 29060388
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chronic intracochlear electrical stimulation at high charge densities results in platinum dissolution but not neural loss or functional changes in vivo.
    Shepherd RK; Carter PM; Enke YL; Wise AK; Fallon JB
    J Neural Eng; 2019 Apr; 16(2):026009. PubMed ID: 30523828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control.
    Iredale E; Voigt B; Rankin A; Kim KW; Chen JZ; Schmid S; Hebb MO; Peters TM; Wong E
    Med Phys; 2022 Sep; 49(9):6055-6067. PubMed ID: 35754362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impedance scaling for gold and platinum microelectrodes.
    Fan B; Wolfrum B; Robinson JT
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34433150
    [No Abstract]   [Full Text] [Related]  

  • 60. Influence of electrode impedance on threshold voltage for transcranial electrical stimulation in motor evoked potential monitoring.
    Journée HL; Polak HE; de Kleuver M
    Med Biol Eng Comput; 2004 Jul; 42(4):557-61. PubMed ID: 15320467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.