These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34015769)

  • 61. Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation.
    Blau A; Ziegler C; Heyer M; Endres F; Schwitzgebel G; Matthies T; Stieglitz T; Meyer JU; Göpel W
    Biosens Bioelectron; 1997; 12(9-10):883-92. PubMed ID: 9451781
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.
    Vargas Luna JL; Krenn M; Cortés Ramírez JA; Mayr W
    PLoS One; 2015; 10(5):e0125609. PubMed ID: 25942010
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dual electrode stimulation using the nucleus CI24RE cochlear implant: electrode impedance and pitch ranking studies.
    Busby PA; Plant KL
    Ear Hear; 2005 Oct; 26(5):504-11. PubMed ID: 16230899
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits.
    Cantrell DR; Troy JB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2768-71. PubMed ID: 19163279
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Computationally optimized ECoG stimulation with local safety constraints.
    Guler S; Dannhauer M; Roig-Solvas B; Gkogkidis A; Macleod R; Ball T; Ojemann JG; Brooks DH
    Neuroimage; 2018 Jun; 173():35-48. PubMed ID: 29427847
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Stimulation-induced changes at the electrode-tissue interface and their influence on deep brain stimulation.
    Evers J; Sridhar K; Liegey J; Brady J; Jahns H; Lowery M
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35728575
    [No Abstract]   [Full Text] [Related]  

  • 67. Acute voltage, charge, and energy thresholds as functions of electrode size for electrical stimulation of the canine heart.
    Lindemans FW; Zimmerman AN
    Cardiovasc Res; 1979 Jul; 13(7):383-91. PubMed ID: 487379
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study.
    Nayagam DA; Williams RA; Allen PJ; Shivdasani MN; Luu CD; Salinas-LaRosa CM; Finch S; Ayton LN; Saunders AL; McPhedran M; McGowan C; Villalobos J; Fallon JB; Wise AK; Yeoh J; Xu J; Feng H; Millard R; McWade M; Thien PC; Williams CE; Shepherd RK
    PLoS One; 2014; 9(5):e97182. PubMed ID: 24853376
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.
    Zhou H; Lu Y; Chen W; Wu Z; Zou H; Krundel L; Li G
    Sensors (Basel); 2015 Jul; 15(7):17241-57. PubMed ID: 26193273
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Offset prediction for charge-balanced stimulus waveforms.
    Woods VM; Triantis IF; Toumazou C
    J Neural Eng; 2011 Aug; 8(4):046032. PubMed ID: 21753229
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation.
    Howell B; Naik S; Grill WM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):297-307. PubMed ID: 24448594
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy.
    Norlin A; Pan J; Leygraf C
    Biomol Eng; 2002 Aug; 19(2-6):67-71. PubMed ID: 12202164
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electrochemical and biological performance of chronically stimulated conductive hydrogel electrodes.
    Dalrymple AN; Robles UA; Huynh M; Nayagam BA; Green RA; Poole-Warren LA; Fallon JB; Shepherd RK
    J Neural Eng; 2020 Apr; 17(2):026018. PubMed ID: 32135529
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Measurement and analysis of access resistance and polarization impedance in cochlear implant recipients.
    Tykocinski M; Cohen LT; Cowan RS
    Otol Neurotol; 2005 Sep; 26(5):948-56. PubMed ID: 16151342
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of pulse duration on neuromuscular blockade monitoring: implications for supramaximal stimulation.
    Pierce PA; Mylrea KC; Watt RC; Hameroff SR; Cork RV; Calkins JM
    J Clin Monit; 1986 Jul; 2(3):169-73. PubMed ID: 3489078
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art.
    Günter C; Delbeke J; Ortiz-Catalan M
    J Neuroeng Rehabil; 2019 Jan; 16(1):13. PubMed ID: 30658656
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Does a coupling capacitor enhance the charge balance during neural stimulation? An empirical study.
    van Dongen MN; Serdijn WA
    Med Biol Eng Comput; 2016 Jan; 54(1):93-101. PubMed ID: 26018756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.