BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34016050)

  • 21. The discovery of novel LPMO families with a new Hidden Markov model.
    Voshol GP; Vijgenboom E; Punt PJ
    BMC Res Notes; 2017 Feb; 10(1):105. PubMed ID: 28222763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. OASIS: an automated program for global investigation of bacterial and archaeal insertion sequences.
    Robinson DG; Lee MC; Marx CJ
    Nucleic Acids Res; 2012 Dec; 40(22):e174. PubMed ID: 22904081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IS4 family goes genomic.
    De Palmenaer D; Siguier P; Mahillon J
    BMC Evol Biol; 2008 Jan; 8():18. PubMed ID: 18215304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Miniature inverted-repeat transposable elements: discovery, distribution, and activity.
    Fattash I; Rooke R; Wong A; Hui C; Luu T; Bhardwaj P; Yang G
    Genome; 2013 Sep; 56(9):475-86. PubMed ID: 24168668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale.
    Girgis HZ
    BMC Bioinformatics; 2015 Jul; 16():227. PubMed ID: 26206263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data.
    Nelson MG; Linheiro RS; Bergman CM
    G3 (Bethesda); 2017 Aug; 7(8):2763-2778. PubMed ID: 28637810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. No one tool to rule them all: prokaryotic gene prediction tool annotations are highly dependent on the organism of study.
    Dimonaco NJ; Aubrey W; Kenobi K; Clare A; Creevey CJ
    Bioinformatics; 2022 Feb; 38(5):1198-1207. PubMed ID: 34875010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobile elements in archaeal genomes.
    Brügger K; Redder P; She Q; Confalonieri F; Zivanovic Y; Garrett RA
    FEMS Microbiol Lett; 2002 Jan; 206(2):131-41. PubMed ID: 11814653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-seq-Based Gene Annotation and Comparative Genomics of Four Fungal Grass Pathogens in the Genus Zymoseptoria Identify Novel Orphan Genes and Species-Specific Invasions of Transposable Elements.
    Grandaubert J; Bhattacharyya A; Stukenbrock EH
    G3 (Bethesda); 2015 Apr; 5(7):1323-33. PubMed ID: 25917918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and functional annotation of nested transposable elements in eukaryotic genomes.
    Gao C; Xiao M; Ren X; Hayward A; Yin J; Wu L; Fu D; Li J
    Genomics; 2012 Oct; 100(4):222-30. PubMed ID: 22800764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes.
    Iranzo J; Gómez MJ; López de Saro FJ; Manrubia S
    PLoS Comput Biol; 2014 Jun; 10(6):e1003680. PubMed ID: 24967627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A survey of bacterial insertion sequences using IScan.
    Wagner A; Lewis C; Bichsel M
    Nucleic Acids Res; 2007; 35(16):5284-93. PubMed ID: 17686783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ACLAME: a CLAssification of Mobile genetic Elements.
    Leplae R; Hebrant A; Wodak SJ; Toussaint A
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D45-9. PubMed ID: 14681355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Look4TRs: a de novo tool for detecting simple tandem repeats using self-supervised hidden Markov models.
    Velasco A; James BT; Wells VD; Girgis HZ
    Bioinformatics; 2020 Jan; 36(2):380-387. PubMed ID: 31287494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of transposable elements using multiple alignments of related genomes.
    Caspi A; Pachter L
    Genome Res; 2006 Feb; 16(2):260-70. PubMed ID: 16354754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CSBFinder: discovery of colinear syntenic blocks across thousands of prokaryotic genomes.
    Svetlitsky D; Dagan T; Chalifa-Caspi V; Ziv-Ukelson M
    Bioinformatics; 2019 May; 35(10):1634-1643. PubMed ID: 30321308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring bacterial insertion sequences with ISfinder: objectives, uses, and future developments.
    Siguier P; Varani A; Perochon J; Chandler M
    Methods Mol Biol; 2012; 859():91-103. PubMed ID: 22367867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Producing polished prokaryotic pangenomes with the Panaroo pipeline.
    Tonkin-Hill G; MacAlasdair N; Ruis C; Weimann A; Horesh G; Lees JA; Gladstone RA; Lo S; Beaudoin C; Floto RA; Frost SDW; Corander J; Bentley SD; Parkhill J
    Genome Biol; 2020 Jul; 21(1):180. PubMed ID: 32698896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.