These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34016234)

  • 1. Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces.
    Lin WMM; Yarema M; Liu M; Sargent E; Wood V
    Chimia (Aarau); 2021 May; 75(5):398-413. PubMed ID: 34016234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible colloidal nanocrystal electronics.
    Kagan CR
    Chem Soc Rev; 2019 Mar; 48(6):1626-1641. PubMed ID: 30206583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning of Coupling and Surface Quality of PbS Nanocrystals via a Combined Ammonium Sulfide and Iodine Treatment.
    Zhang H; Yang J; Chen JR; Engstrom JR; Hanrath T; Wise FW
    J Phys Chem Lett; 2016 Feb; 7(4):642-6. PubMed ID: 26807665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the Electronic Structure of Nanocrystal Thin Films Using Energy-Resolved Electrochemical Impedance Spectroscopy.
    Volk S; Yazdani N; Sanusoglu E; Yarema O; Yarema M; Wood V
    J Phys Chem Lett; 2018 Mar; 9(6):1384-1392. PubMed ID: 29485880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-resistant AgBiS
    Oh JT; Bae SY; Ha SR; Cho H; Lim SJ; Boukhvalov DW; Kim Y; Choi H
    Nanoscale; 2019 May; 11(19):9633-9640. PubMed ID: 31065644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells.
    Liu L; Liu C; Fu W; Deng L; Zhong H
    Chemphyschem; 2016 Mar; 17(5):771-6. PubMed ID: 26337257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Measurement and Control of the Fermi Level in Colloidal Nanocrystal Thin Films during Their Fabrication.
    Volk S; Yazdani N; Yarema O; Yarema M; Bozyigit D; Wood V
    J Phys Chem Lett; 2018 Dec; 9(24):7165-7172. PubMed ID: 30525647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance.
    Guo Q; Ford GM; Hillhouse HW; Agrawal R
    Nano Lett; 2009 Aug; 9(8):3060-5. PubMed ID: 19518118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
    Lignos I; Maceiczyk R; deMello AJ
    Acc Chem Res; 2017 May; 50(5):1248-1257. PubMed ID: 28467055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors.
    Swisher SL; Volkman SK; Subramanian V
    ACS Appl Mater Interfaces; 2015 May; 7(19):10069-75. PubMed ID: 25915094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications.
    Fu H; Tsang SW
    Nanoscale; 2012 Apr; 4(7):2187-201. PubMed ID: 22382898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band gap and composition engineering on a nanocrystal (BCEN) in solution.
    Peng X
    Acc Chem Res; 2010 Nov; 43(11):1387-95. PubMed ID: 20695433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-processed germanium nanocrystal thin films as materials for low-cost optical and electronic devices.
    Holman ZC; Kortshagen UR
    Langmuir; 2009 Oct; 25(19):11883-9. PubMed ID: 19642659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals.
    Yakunin S; Dirin DN; Protesescu L; Sytnyk M; Tollabimazraehno S; Humer M; Hackl F; Fromherz T; Bodnarchuk MI; Kovalenko MV; Heiss W
    ACS Nano; 2014 Dec; 8(12):12883-94. PubMed ID: 25470412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressed carrier scattering in CdS-encapsulated PbS nanocrystal films.
    Moroz P; Kholmicheva N; Mellott B; Liyanage G; Rijal U; Bastola E; Huband K; Khon E; McBride K; Zamkov M
    ACS Nano; 2013 Aug; 7(8):6964-77. PubMed ID: 23889162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature.
    Shanker GS; Swarnkar A; Chatterjee A; Chakraborty S; Phukan M; Parveen N; Biswas K; Nag A
    Nanoscale; 2015 May; 7(20):9204-14. PubMed ID: 25926291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting the colloidal nanocrystal library to construct electronic devices.
    Choi JH; Wang H; Oh SJ; Paik T; Sung P; Sung J; Ye X; Zhao T; Diroll BT; Murray CB; Kagan CR
    Science; 2016 Apr; 352(6282):205-8. PubMed ID: 27124455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.
    Giansante C; Infante I
    J Phys Chem Lett; 2017 Oct; 8(20):5209-5215. PubMed ID: 28972763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Luminescence from Perovskite Quantum Dot Solids.
    Kim Y; Yassitepe E; Voznyy O; Comin R; Walters G; Gong X; Kanjanaboos P; Nogueira AF; Sargent EH
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25007-13. PubMed ID: 26529572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.