These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34016334)
1. Comparative study of heat transfer and thermal damage assessment models for hyperthermia treatment. Liu KC; Chen TM J Therm Biol; 2021 May; 98():102907. PubMed ID: 34016334 [TBL] [Abstract][Full Text] [Related]
2. A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach. Kumar D; Rai KN J Therm Biol; 2016 Dec; 62(Pt B):170-180. PubMed ID: 27888931 [TBL] [Abstract][Full Text] [Related]
3. Local thermal non-equilibrium bioheat transfer model for interstitial hyperthermia treatment of tumour cell: A numerical approach. Dinda A; Acharya J; Bhanja D; Nath S J Therm Biol; 2022 Dec; 110():103368. PubMed ID: 36462865 [TBL] [Abstract][Full Text] [Related]
4. Influence of different heat transfer models on therapeutic temperature prediction and heat-induced damage during magnetic hyperthermia. Tang Y; Wang Y; Flesch RCC; Jin T J Therm Biol; 2023 Dec; 118():103747. PubMed ID: 38000145 [TBL] [Abstract][Full Text] [Related]
5. Numerical analysis of local non-equilibrium heat transfer in layered spherical tissue during magnetic hyperthermia. Liu KC; Yang YC Comput Methods Biomech Biomed Engin; 2020 Oct; 23(13):968-980. PubMed ID: 32530754 [TBL] [Abstract][Full Text] [Related]
6. Numerical study of non-Fourier heat conduction in a biolayer spherical living tissue during hyperthermia. Mohajer M; Ayani MB; Tabrizi HB J Therm Biol; 2016 Dec; 62(Pt B):181-188. PubMed ID: 27888932 [TBL] [Abstract][Full Text] [Related]
7. Bioheat transfer problem for one-dimensional spherical biological tissues. Kengne E; Lakhssassi A Math Biosci; 2015 Nov; 269():1-9. PubMed ID: 26327484 [TBL] [Abstract][Full Text] [Related]
8. A parametric study of thermal therapy of skin tissue. Nóbrega S; Coelho PJ J Therm Biol; 2017 Jan; 63():92-103. PubMed ID: 28010820 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulation of dual-phase-lag bioheat transfer model during thermal therapy. Kumar P; Kumar D; Rai KN Math Biosci; 2016 Nov; 281():82-91. PubMed ID: 27621039 [TBL] [Abstract][Full Text] [Related]
10. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment. LeBrun A; Ma R; Zhu L J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926 [TBL] [Abstract][Full Text] [Related]
11. Heat transfer analysis of skin during thermal therapy using thermal wave equation. Kashcooli M; Salimpour MR; Shirani E J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948 [TBL] [Abstract][Full Text] [Related]
12. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation. Kumar P; Kumar D; Rai KN J Therm Biol; 2016 Aug; 60():204-12. PubMed ID: 27503734 [TBL] [Abstract][Full Text] [Related]
13. An analytical study on the fractional transient heating within the skin tissue during the thermal therapy. Ghanmi A; Abbas IA J Therm Biol; 2019 May; 82():229-233. PubMed ID: 31128652 [TBL] [Abstract][Full Text] [Related]
14. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation. Huang HW; Shih TC; Liauh CT Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157 [TBL] [Abstract][Full Text] [Related]
15. A Non-Fourier Bioheat Transfer Model for Cryosurgery of Tumor Tissue with Minimum Collateral Damage. Barman C; Rath P; Bhattacharya A Comput Methods Programs Biomed; 2021 Mar; 200():105857. PubMed ID: 33280936 [TBL] [Abstract][Full Text] [Related]
16. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells. Phadnis A; Kumar S; Srivastava A J Therm Biol; 2016 Oct; 61():16-28. PubMed ID: 27712656 [TBL] [Abstract][Full Text] [Related]
17. An improved analytical model for heat flow in cancerous tumours to avoid thermal injuries during hyperthermia. Dutta J; Kundu B Proc Inst Mech Eng H; 2021 May; 235(5):500-514. PubMed ID: 33611979 [TBL] [Abstract][Full Text] [Related]
18. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method. Lahonian M; Golneshan AA IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797 [TBL] [Abstract][Full Text] [Related]
19. A methodology for determining optimal thermal damage in magnetic nanoparticle hyperthermia cancer treatment. Mital M; Tafreshi HV Int J Numer Method Biomed Eng; 2012 Feb; 28(2):205-13. PubMed ID: 25099326 [TBL] [Abstract][Full Text] [Related]
20. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]