BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34016363)

  • 1. The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods.
    Sampaio F; Krechemer FS; Marchioro CA
    J Therm Biol; 2021 May; 98():102946. PubMed ID: 34016363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal variation in voltinism of insect pests: sensitivity to location and temperature anomalies.
    Marchioro CA; Sampaio F; da Silva Krechemer F
    Neotrop Entomol; 2021 Apr; 50(2):208-217. PubMed ID: 33656657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of models to describe the temperature-dependent development of
    Santos HTD; Marchioro CA
    Bull Entomol Res; 2021 Aug; 111(4):476-484. PubMed ID: 33814025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario and climate model choice.
    Ziter C; Robinson EA; Newman JA
    Glob Chang Biol; 2012 Sep; 18(9):2771-80. PubMed ID: 24501055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Impact of Climate Change on Argyrotaenia sphaleropa (Meyrick, 1909) Voltinism: Implications for Fruit Production in Southern Brazil.
    Dos Santos HT; Marchioro CA
    Neotrop Entomol; 2024 Jun; ():. PubMed ID: 38874655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pest scenario of Spodoptera litura (Fab.) on groundnut under representative concentration pathways (RCPs) based climate change scenarios.
    Srinivasa Rao M; Rama Rao CA; Sreelakshmi P; Islam A; Subba Rao AVM; Ravindra Chary G; Bhaskar S
    J Therm Biol; 2020 Dec; 94():102749. PubMed ID: 33292990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent development models describing the effects of temperature on the development of Spodoptera eridania.
    Sampaio F; Krechemer FS; Marchioro CA
    Pest Manag Sci; 2021 Feb; 77(2):919-929. PubMed ID: 32975885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Potential Geographical Distribution of the Southern Armyworm (
    Zhang Y; Zhao H; Qi Y; Li M; Yang N; Guo J; Xian X; Liu W
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario.
    Rao MS; Swathi P; Rao CA; Rao KV; Raju BM; Srinivas K; Manimanjari D; Maheswari M
    PLoS One; 2015; 10(2):e0116762. PubMed ID: 25671564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Impacts the Development and Survival of Common Cutworm (Spodoptera litura): Simulation and Visualization of Potential Population Growth in India under Warmer Temperatures through Life Cycle Modelling and Spatial Mapping.
    Fand BB; Sul NT; Bal SK; Minhas PS
    PLoS One; 2015; 10(4):e0124682. PubMed ID: 25927609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projecting insect voltinism under high and low greenhouse gas emission conditions.
    Chen S; Fleischer SJ; Tobin PC; Saunders MC
    Environ Entomol; 2011 Jun; 40(3):505-15. PubMed ID: 22251628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of climate change on Helicoverpa armigera voltinism in different Agro-Climatic Zones of India.
    Bapatla KG; Singh AD; Sengottaiyan V; Korada RR; Yeddula S
    J Therm Biol; 2022 May; 106():103229. PubMed ID: 35636881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate Change Impacts on the Potential Distribution and Abundance of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) With Special Reference to North America and Europe.
    Kistner EJ
    Environ Entomol; 2017 Dec; 46(6):1212-1224. PubMed ID: 29069361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal temperature variations in MarkSim multimodel data and their impact on voltinism of fruit fly, Bactrocera species on mango.
    Choudhary JS; Mali SS; Mukherjee D; Kumari A; Moanaro L; Rao MS; Das B; Singh AK; Bhatt BP
    Sci Rep; 2019 Jul; 9(1):9708. PubMed ID: 31273224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Management Implications for the Nantucket Pine Tip Moth From Temperature-Induced Shifts in Phenology and Voltinism Attributed to Climate Change.
    Cassidy VA; Asaro C; McCarty EP
    J Econ Entomol; 2022 Oct; 115(5):1331-1341. PubMed ID: 35552738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of climate change on the reproductive diapause and voltinism of the carrot weevil, Listronotus oregonensis.
    Gagnon AÈ; Bourgeois G
    J Insect Physiol; 2024 Jun; 155():104653. PubMed ID: 38763361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent reproduction of Spodoptera eridania: developing an oviposition model for a novel invasive species.
    Sampaio F; Batista MM; Marchioro CA
    Pest Manag Sci; 2024 Mar; 80(3):1118-1125. PubMed ID: 37856447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism.
    Kong JD; Hoffmann AA; Kearney MR
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180547. PubMed ID: 31203762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Temperature on Development and Voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for Climate Change Impacts.
    Ahn JJ; Son Y; He Y; Lee E; Park YL
    PLoS One; 2016; 11(8):e0161319. PubMed ID: 27532151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climatic warming increases voltinism in European butterflies and moths.
    Altermatt F
    Proc Biol Sci; 2010 Apr; 277(1685):1281-7. PubMed ID: 20031988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.