BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34017003)

  • 1. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes.
    Feng X; López Del Amo V; Mameli E; Lee M; Bishop AL; Perrimon N; Gantz VM
    Nat Commun; 2021 May; 12(1):2960. PubMed ID: 34017003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus.
    Harvey-Samuel T; Feng X; Okamoto EM; Purusothaman DK; Leftwich PT; Alphey L; Gantz VM
    Nat Commun; 2023 Nov; 14(1):7561. PubMed ID: 37985762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for the generation of heritable germline mutations in the disease vector Culex quinquefasciatus using clustered regularly interspaced short palindrome repeats-associated protein 9.
    Li M; Li T; Liu N; Raban RR; Wang X; Akbari OS
    Insect Mol Biol; 2020 Apr; 29(2):214-220. PubMed ID: 31693260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector
    Harvey-Samuel T; Feng X; Okamoto EM; Purusothaman DK; Leftwich PT; Alphey L; Gantz VM
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398284
    [No Abstract]   [Full Text] [Related]  

  • 5. Embryo Microinjection Techniques for Efficient Site-Specific Mutagenesis in Culex quinquefasciatus.
    Bui M; Li M; Raban RR; Liu N; Akbari OS
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparing and Injecting Embryos of Culex Mosquitoes to Generate Null Mutations using CRISPR/Cas9.
    Meuti ME; Harrell R
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 32986041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say.
    Anderson ME; Mavica J; Shackleford L; Flis I; Fochler S; Basu S; Alphey L
    PLoS One; 2019; 14(11):e0224857. PubMed ID: 31714905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector,
    Torres TZB; Prince BC; Robison A; Rückert C
    Insects; 2022 Sep; 13(9):. PubMed ID: 36135557
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular safeguarding of CRISPR gene drive experiments.
    Champer J; Chung J; Lee YL; Liu C; Yang E; Wen Z; Clark AG; Messer PW
    Elife; 2019 Jan; 8():. PubMed ID: 30666960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito
    Feng X; Kambic L; Nishimoto JHK; Reed FA; Denton JA; Sutton JT; Gantz VM
    CRISPR J; 2021 Aug; 4(4):595-608. PubMed ID: 34280034
    [No Abstract]   [Full Text] [Related]  

  • 11. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic analysis of insecticide resistance in the lymphatic filariasis vector Culex quinquefasciatus.
    Silva Martins WF; Wilding CS; Isaacs AT; Rippon EJ; Megy K; Donnelly MJ
    Sci Rep; 2019 Aug; 9(1):11406. PubMed ID: 31388075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-generation gene drive for population modification of the malaria vector mosquito,
    Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ReMOT Control Delivery of CRISPR-Cas9 Ribonucleoprotein Complex to Induce Germline Mutagenesis in the Disease Vector Mosquitoes Culex pipiens pallens (Diptera: Culicidae).
    Li X; Xu Y; Zhang H; Yin H; Zhou D; Sun Y; Ma L; Shen B; Zhu C
    J Med Entomol; 2021 May; 58(3):1202-1209. PubMed ID: 33590868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas-9 mediated knock-in by homology dependent repair in the West Nile Virus vector Culex quinquefasciatus Say.
    Purusothaman DK; Shackleford L; Anderson MAE; Harvey-Samuel T; Alphey L
    Sci Rep; 2021 Jul; 11(1):14964. PubMed ID: 34294769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus.
    Atyame CM; Alout H; Mousson L; Vazeille M; Diallo M; Weill M; Failloux AB
    Proc Biol Sci; 2019 Jan; 286(1894):20182273. PubMed ID: 30963855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs.
    Champer SE; Oh SY; Liu C; Wen Z; Clark AG; Messer PW; Champer J
    Sci Adv; 2020 Mar; 6(10):eaaz0525. PubMed ID: 32181354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin receptor knockdown blocks filarial parasite development and alters egg production in the southern house mosquito, Culex quinquefasciatus.
    Nuss AB; Brown MR; Murty US; Gulia-Nuss M
    PLoS Negl Trop Dis; 2018 Apr; 12(4):e0006413. PubMed ID: 29649225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria.
    Qureshi A; Connolly JB
    Malar J; 2023 Aug; 22(1):234. PubMed ID: 37580703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a confinable gene drive system in the human disease vector
    Li M; Yang T; Kandul NP; Bui M; Gamez S; Raban R; Bennett J; Sánchez C HM; Lanzaro GC; Schmidt H; Lee Y; Marshall JM; Akbari OS
    Elife; 2020 Jan; 9():. PubMed ID: 31960794
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.