BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34017020)

  • 1. Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy.
    Ghahremani M; Habil MK; Zapata-Rodriguez CJ
    Sci Rep; 2021 May; 11(1):10639. PubMed ID: 34017020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements.
    He J; Fan C; Ding P; Zhu S; Liang E
    Sci Rep; 2016 Feb; 6():20777. PubMed ID: 26861192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An engineered CARS substrate with giant field enhancement in crisscross dimer nanostructure.
    Zhang J; Chen S; Wang J; Mu K; Fan C; Liang E; Ding P
    Sci Rep; 2018 Jan; 8(1):740. PubMed ID: 29335467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fano-resonance plasmonic assembly for broadband-enhanced coherent anti-Stokes Raman scattering.
    Zhang Y; Lu M; Zhu Z; Li Y; Wei H
    Sci Rep; 2023 May; 13(1):7283. PubMed ID: 37142647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anapole States in Gap-Surface Plasmon Resonators.
    Yezekyan T; Zenin VA; Beermann J; Bozhevolnyi SI
    Nano Lett; 2022 Aug; 22(15):6098-6104. PubMed ID: 35867910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers.
    Dutta A; Alam K; Nuutinen T; Hulkko E; Karvinen P; Kuittinen M; Toppari JJ; Vartiainen EM
    Opt Express; 2019 Oct; 27(21):30031-30043. PubMed ID: 31684257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering.
    Wang J; Zhang J; Tian Y; Fan C; Mu K; Chen S; Ding P; Liang E
    Opt Express; 2017 Jan; 25(1):497-507. PubMed ID: 28085843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.
    Steuwe C; Kaminski CF; Baumberg JJ; Mahajan S
    Nano Lett; 2011 Dec; 11(12):5339-43. PubMed ID: 22074256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide.
    Dovbeshko G; Fesenko O; Dementjev A; Karpicz R; Fedorov V; Posudievsky OY
    Nanoscale Res Lett; 2014; 9(1):263. PubMed ID: 24948887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance.
    Zhang Y; Zhen YR; Neumann O; Day JK; Nordlander P; Halas NJ
    Nat Commun; 2014 Jul; 5():4424. PubMed ID: 25020075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.
    Aggarwal RL; Farrar LW; Greeneltch NG; Van Duyne RP; Polla DL
    Appl Spectrosc; 2013 Feb; 67(2):132-5. PubMed ID: 23622430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced coherent anti-Stokes Raman scattering based on coupled nanohole-slit arrays.
    Feng Y; Wang Y; Shao F; Meng L; Sun M
    Phys Chem Chem Phys; 2022 Jun; 24(22):13911-13921. PubMed ID: 35621057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doubly mirror-induced electric and magnetic anapole modes in metal-dielectric-metal nanoresonators.
    Yao J; Li B; Cai G; Liu QH
    Opt Lett; 2021 Feb; 46(3):576-579. PubMed ID: 33528412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-induced magnetic anapole mode assisted strong field enhancement.
    Wang J; Yang W; He Y
    J Chem Phys; 2023 Dec; 159(24):. PubMed ID: 38146831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational spectroscopy and imaging with non-resonant coherent anti-Stokes Raman scattering: double stimulated Raman scattering scheme.
    Choi DS; Kim CH; Lee T; Nah S; Rhee H; Cho M
    Opt Express; 2019 Aug; 27(16):23558-23575. PubMed ID: 31510631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigation of a plasmonic substrate with multi-resonance for surface enhanced hyper-Raman scattering.
    Zhu S; Fan C; Ding P; Liang E; Hou H; Wu Y
    Sci Rep; 2018 Aug; 8(1):11891. PubMed ID: 30089880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.