BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 34017122)

  • 1. The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape.
    de Jong MME; Kellermayer Z; Papazian N; Tahri S; Hofste Op Bruinink D; Hoogenboezem R; Sanders MA; van de Woestijne PC; Bos PK; Khandanpour C; Vermeulen J; Moreau P; van Duin M; Broijl A; Sonneveld P; Cupedo T
    Nat Immunol; 2021 Jun; 22(6):769-780. PubMed ID: 34017122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy.
    Bailur JK; McCachren SS; Doxie DB; Shrestha M; Pendleton K; Nooka AK; Neparidze N; Parker TL; Bar N; Kaufman JL; Hofmeister CC; Boise LH; Lonial S; Kemp ML; Dhodapkar KM; Dhodapkar MV
    JCI Insight; 2019 Apr; 5(11):. PubMed ID: 31013254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma.
    Giannakoulas N; Ntanasis-Stathopoulos I; Terpos E
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33923357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-evolution of tumor and immune cells during progression of multiple myeloma.
    Liu R; Gao Q; Foltz SM; Fowles JS; Yao L; Wang JT; Cao S; Sun H; Wendl MC; Sethuraman S; Weerasinghe A; Rettig MP; Storrs EP; Yoon CJ; Wyczalkowski MA; McMichael JF; Kohnen DR; King J; Goldsmith SR; O'Neal J; Fulton RS; Fronick CC; Ley TJ; Jayasinghe RG; Fiala MA; Oh ST; DiPersio JF; Vij R; Ding L
    Nat Commun; 2021 May; 12(1):2559. PubMed ID: 33963182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics.
    Tirier SM; Mallm JP; Steiger S; Poos AM; Awwad MHS; Giesen N; Casiraghi N; Susak H; Bauer K; Baumann A; John L; Seckinger A; Hose D; Müller-Tidow C; Goldschmidt H; Stegle O; Hundemer M; Weinhold N; Raab MS; Rippe K
    Nat Commun; 2021 Nov; 12(1):6960. PubMed ID: 34845188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The IKZF1-IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages.
    Mougiakakos D; Bach C; Böttcher M; Beier F; Röhner L; Stoll A; Rehli M; Gebhard C; Lischer C; Eberhardt M; Vera J; Büttner-Herold M; Bitterer K; Balzer H; Leffler M; Jitschin S; Hundemer M; Awwad MHS; Busch M; Stenger S; Völkl S; Schütz C; Krönke J; Mackensen A; Bruns H
    Cancer Immunol Res; 2021 Mar; 9(3):265-278. PubMed ID: 33563611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment.
    Lam C; Ferguson ID; Mariano MC; Lin YT; Murnane M; Liu H; Smith GA; Wong SW; Taunton J; Liu JO; Mitsiades CS; Hann BC; Aftab BT; Wiita AP
    Haematologica; 2018 Jul; 103(7):1218-1228. PubMed ID: 29622655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease.
    Garcia-Gomez A; De Las Rivas J; Ocio EM; Díaz-Rodríguez E; Montero JC; Martín M; Blanco JF; Sanchez-Guijo FM; Pandiella A; San Miguel JF; Garayoa M
    Oncotarget; 2014 Sep; 5(18):8284-305. PubMed ID: 25268740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma.
    Görgün G; Samur MK; Cowens KB; Paula S; Bianchi G; Anderson JE; White RE; Singh A; Ohguchi H; Suzuki R; Kikuchi S; Harada T; Hideshima T; Tai YT; Laubach JP; Raje N; Magrangeas F; Minvielle S; Avet-Loiseau H; Munshi NC; Dorfman DM; Richardson PG; Anderson KC
    Clin Cancer Res; 2015 Oct; 21(20):4607-18. PubMed ID: 25979485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells.
    Noll JE; Williams SA; Tong CM; Wang H; Quach JM; Purton LE; Pilkington K; To LB; Evdokiou A; Gronthos S; Zannettino AC
    Haematologica; 2014 Jan; 99(1):163-71. PubMed ID: 23935020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An IL-1β-driven neutrophil-stromal cell axis fosters a BAFF-rich protumor microenvironment in individuals with multiple myeloma.
    de Jong MME; Fokkema C; Papazian N; Czeti Á; Appelman MK; Vermeulen M; van Heusden T; Hoogenboezem RM; van Beek G; Tahri S; Sanders MA; van de Woestijne PC; Gay F; Moreau P; Büttner-Herold M; Bruns H; van Duin M; Broijl A; Sonneveld P; Cupedo T
    Nat Immunol; 2024 May; 25(5):820-833. PubMed ID: 38600356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.
    Ji Z; Su J; Wu D; Peng H; Zhao W; Nlong Zhao B; Zhou X
    Oncotarget; 2017 Jan; 8(5):7647-7665. PubMed ID: 28032590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow stromal cells induce chromatin remodeling in multiple myeloma cells leading to transcriptional changes.
    Binder M; Szalat RE; Talluri S; Fulciniti M; Avet-Loiseau H; Parmigiani G; Samur MK; Munshi NC
    Nat Commun; 2024 May; 15(1):4139. PubMed ID: 38755155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockade of VLA4 sensitizes leukemic and myeloma tumor cells to CD3 redirection in the bone marrow microenvironment.
    Nair-Gupta P; Rudnick SI; Luistro L; Smith M; McDaid R; Li Y; Pillarisetti K; Joseph J; Heidrich B; Packman K; Attar R; Gaudet F
    Blood Cancer J; 2020 Jun; 10(6):65. PubMed ID: 32483120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bone marrow stromal microenvironment influences myeloma therapeutic response in vitro.
    Cheung WC; Van Ness B
    Leukemia; 2001 Feb; 15(2):264-71. PubMed ID: 11236942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells.
    Wang J; De Veirman K; De Beule N; Maes K; De Bruyne E; Van Valckenborgh E; Vanderkerken K; Menu E
    Oncotarget; 2015 Dec; 6(41):43992-4004. PubMed ID: 26556857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma.
    Ria R; Vacca A
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Immune Landscape of Osteosarcoma: Implications for Prognosis and Treatment Response.
    Cascini C; Chiodoni C
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment.
    Ponzetta A; Benigni G; Antonangeli F; Sciumè G; Sanseviero E; Zingoni A; Ricciardi MR; Petrucci MT; Santoni A; Bernardini G
    Cancer Res; 2015 Nov; 75(22):4766-77. PubMed ID: 26438594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in the Transcriptional Programs of Myeloma Cells and the Microenvironment during Extramedullary Progression Affect Proliferation and Immune Evasion.
    Ryu D; Kim SJ; Hong Y; Jo A; Kim N; Kim HJ; Lee HO; Kim K; Park WY
    Clin Cancer Res; 2020 Feb; 26(4):935-944. PubMed ID: 31558476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.