These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

713 related articles for article (PubMed ID: 34017140)

  • 21. Iterative hard thresholding in genome-wide association studies: Generalized linear models, prior weights, and double sparsity.
    Chu BB; Keys KL; German CA; Zhou H; Zhou JJ; Sobel EM; Sinsheimer JS; Lange K
    Gigascience; 2020 Jun; 9(6):. PubMed ID: 32491161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. "Forward genetics" as a method to maximize power and cost-efficiency in studies of human complex traits.
    Boks MP; Derks EM; Dolan CV; Kahn RS; Ophoff RA
    Behav Genet; 2010 Jul; 40(4):564-71. PubMed ID: 20232132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TSLRF: Two-Stage Algorithm Based on Least Angle Regression and Random Forest in genome-wide association studies.
    Sun J; Wu Q; Shen D; Wen Y; Liu F; Gao Y; Ding J; Zhang J
    Sci Rep; 2019 Dec; 9(1):18034. PubMed ID: 31792302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes.
    Bi W; Zhou W; Dey R; Mukherjee B; Sampson JN; Lee S
    Am J Hum Genet; 2021 May; 108(5):825-839. PubMed ID: 33836139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits Using Cox Mixed-Effects Models.
    He L; Kulminski AM
    Genetics; 2020 May; 215(1):41-58. PubMed ID: 32132097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A machine learning pipeline for quantitative phenotype prediction from genotype data.
    Guzzetta G; Jurman G; Furlanello C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 8(Suppl 8):S3. PubMed ID: 21034428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid peeling for fast and accurate calling, phasing, and imputation with sequence data of any coverage in pedigrees.
    Whalen A; Ros-Freixedes R; Wilson DL; Gorjanc G; Hickey JM
    Genet Sel Evol; 2018 Dec; 50(1):67. PubMed ID: 30563452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel association test for multiple secondary phenotypes from a case-control GWAS.
    Ray D; Basu S
    Genet Epidemiol; 2017 Jul; 41(5):413-426. PubMed ID: 28393390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hidden factor: accounting for covariate effects in power and sample size computation for a binary trait.
    Zhang Z; Sun L
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36943372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.
    Wang Y; Goh W; Wong L; Montana G;
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S6. PubMed ID: 24564704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.
    Zhou T; Thung KH; Liu M; Shen D
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):165-175. PubMed ID: 29993426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data.
    St-Pierre J; Oualkacha K; Bhatnagar SR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36708013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank.
    Qian J; Tanigawa Y; Du W; Aguirre M; Chang C; Tibshirani R; Rivas MA; Hastie T
    PLoS Genet; 2020 Oct; 16(10):e1009141. PubMed ID: 33095761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joint analysis of multiple phenotypes for extremely unbalanced case-control association studies.
    Xie H; Cao X; Zhang S; Sha Q
    Genet Epidemiol; 2023 Mar; 47(2):185-197. PubMed ID: 36691904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits.
    Qu J; Runcie D; Cheng H
    Genetics; 2023 Mar; 223(3):. PubMed ID: 36529897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits.
    Foley CN; Staley JR; Breen PG; Sun BB; Kirk PDW; Burgess S; Howson JMM
    Nat Commun; 2021 Feb; 12(1):764. PubMed ID: 33536417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuroimaging PheWAS (Phenome-Wide Association Study): A Free Cloud-Computing Platform for Big-Data, Brain-Wide Imaging Association Studies.
    Zhao L; Batta I; Matloff W; O'Driscoll C; Hobel S; Toga AW
    Neuroinformatics; 2021 Apr; 19(2):285-303. PubMed ID: 32822005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction.
    Chen ML; Doddi A; Royer J; Freschi L; Schito M; Ezewudo M; Kohane IS; Beam A; Farhat M
    EBioMedicine; 2019 May; 43():356-369. PubMed ID: 31047860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network regression analysis for binary and ordinal categorical phenotypes in transcriptome-wide association studies.
    Zhang L; Ju T; Jin X; Ji J; Han J; Zhou X; Yuan Z
    Genetics; 2022 Nov; 222(4):. PubMed ID: 36227056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions.
    Huang M; Liu X; Zhou Y; Summers RM; Zhang Z
    Gigascience; 2019 Feb; 8(2):. PubMed ID: 30535326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.