These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 34017260)

  • 21. Oxidant Mechanisms in Renal Injury and Disease.
    Ratliff BB; Abdulmahdi W; Pawar R; Wolin MS
    Antioxid Redox Signal; 2016 Jul; 25(3):119-46. PubMed ID: 26906267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative stress and cardiovascular disease: new insights.
    Pignatelli P; Menichelli D; Pastori D; Violi F
    Kardiol Pol; 2018; 76(4):713-722. PubMed ID: 29537483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of reactive oxygen species in the renal fibrosis.
    Nie J; Hou FF
    Chin Med J (Engl); 2012 Jul; 125(14):2598-602. PubMed ID: 22882945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration.
    Jha SK; Jha NK; Kumar D; Ambasta RK; Kumar P
    Biochim Biophys Acta Mol Basis Dis; 2017 May; 1863(5):1132-1146. PubMed ID: 27345267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome.
    Jialal I; Devaraj S; Adams-Huet B; Chen X; Kaur H
    J Clin Endocrinol Metab; 2012 Oct; 97(10):E1844-50. PubMed ID: 22872691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis.
    Prieto-Bermejo R; Hernández-Hernández A
    Antioxidants (Basel); 2017 May; 6(2):. PubMed ID: 28505091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial abnormalities: a hub in metabolic syndrome-related cardiac dysfunction caused by oxidative stress.
    Li A; Zheng N; Ding X
    Heart Fail Rev; 2022 Jul; 27(4):1387-1394. PubMed ID: 33950478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer's Disease Murine Models.
    Fragoso-Morales LG; Correa-Basurto J; Rosales-Hernández MC
    Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33540840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase.
    Watanabe H; Miyamoto Y; Honda D; Tanaka H; Wu Q; Endo M; Noguchi T; Kadowaki D; Ishima Y; Kotani S; Nakajima M; Kataoka K; Kim-Mitsuyama S; Tanaka M; Fukagawa M; Otagiri M; Maruyama T
    Kidney Int; 2013 Apr; 83(4):582-92. PubMed ID: 23325087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity.
    Muñoz M; López-Oliva ME; Rodríguez C; Martínez MP; Sáenz-Medina J; Sánchez A; Climent B; Benedito S; García-Sacristán A; Rivera L; Hernández M; Prieto D
    Redox Biol; 2020 Jan; 28():101330. PubMed ID: 31563085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The emerging role of NADPH oxidase NOX5 in vascular disease.
    Jha JC; Watson AMD; Mathew G; de Vos LC; Jandeleit-Dahm K
    Clin Sci (Lond); 2017 May; 131(10):981-990. PubMed ID: 28473473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Angiogenesis impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant interface: Critical mechanisms and therapeutic targets for implant failure under hyperglycemic conditions in diabetes.
    Hu XF; Wang L; Xiang G; Lei W; Feng YF
    Acta Biomater; 2018 Jun; 73():470-487. PubMed ID: 29649637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart.
    Raddatz E; Thomas AC; Sarre A; Benathan M
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H820-35. PubMed ID: 21193588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress.
    Duan J; Gao S; Tu S; Lenahan C; Shao A; Sheng J
    Oxid Med Cell Longev; 2021; 2021():6631805. PubMed ID: 33777315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose-6-phosphate dehydrogenase inhibition attenuates acute lung injury through reduction in NADPH oxidase-derived reactive oxygen species.
    Nadeem A; Al-Harbi NO; Ahmad SF; Ibrahim KE; Siddiqui N; Al-Harbi MM
    Clin Exp Immunol; 2018 Mar; 191(3):279-287. PubMed ID: 29277898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NADPH oxidase mediated maneb- and paraquat-induced oxidative stress in rat polymorphs: Crosstalk with mitochondrial dysfunction.
    Shukla S; Singh D; Kumar V; Chauhan AK; Singh S; Ahmad I; Pandey HP; Singh C
    Pestic Biochem Physiol; 2015 Sep; 123():74-86. PubMed ID: 26267055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of mitochondria and NADPH oxidase derived reactive oxygen species in hyperoxaluria induced nephrolithiasis: therapeutic intervention with combinatorial therapy of N-acetyl cysteine and Apocynin.
    Sharma M; Kaur T; Singla SK
    Mitochondrion; 2016 Mar; 27():15-24. PubMed ID: 26779823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolving concepts of oxidative stress and reactive oxygen species in cardiovascular disease.
    Chen K; Keaney JF
    Curr Atheroscler Rep; 2012 Oct; 14(5):476-83. PubMed ID: 22956414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.