These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Rhizobial Chemotaxis and Motility Systems at Work in the Soil. Aroney STN; Poole PS; Sánchez-Cañizares C Front Plant Sci; 2021; 12():725338. PubMed ID: 34512702 [TBL] [Abstract][Full Text] [Related]
8. Emergence of β-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma. Hassen AI; Lamprecht SC; Bopape FL World J Microbiol Biotechnol; 2020 Feb; 36(3):40. PubMed ID: 32095903 [TBL] [Abstract][Full Text] [Related]
9. Early recognition in the Rhizobium meliloti-alfalfa symbiosis: root exudate factor stimulates root adsorption of homologous rhizobia. Wall LG; Favelukes G J Bacteriol; 1991 Jun; 173(11):3492-9. PubMed ID: 2045369 [TBL] [Abstract][Full Text] [Related]
11. Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. Costa SR; Ng JLP; Mathesius U Mol Plant Microbe Interact; 2021 May; 34(5):470-490. PubMed ID: 33471549 [TBL] [Abstract][Full Text] [Related]
12. The motility and chemosensory systems of Rhizobium leguminosarum, their role in symbiosis, and link to PTS Aroney STN; Pini F; Kessler C; Poole PS; Sánchez-Cañizares C Environ Microbiol; 2024 Feb; 26(2):e16570. PubMed ID: 38216524 [TBL] [Abstract][Full Text] [Related]
14. Mycelial network-mediated rhizobial dispersal enhances legume nodulation. Zhang W; Li XG; Sun K; Tang MJ; Xu FJ; Zhang M; Dai CC ISME J; 2020 Apr; 14(4):1015-1029. PubMed ID: 31974462 [TBL] [Abstract][Full Text] [Related]
15. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Janczarek M Int J Mol Sci; 2011; 12(11):7898-933. PubMed ID: 22174640 [TBL] [Abstract][Full Text] [Related]
16. Identification of a dominant gene in Medicago truncatula that restricts nodulation by Sinorhizobium meliloti strain Rm41. Liu J; Yang S; Zheng Q; Zhu H BMC Plant Biol; 2014 Jun; 14():167. PubMed ID: 24934080 [TBL] [Abstract][Full Text] [Related]
17. Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. Fagorzi C; Bacci G; Huang R; Cangioli L; Checcucci A; Fini M; Perrin E; Natali C; diCenzo GC; Mengoni A mSystems; 2021 Jan; 6(1):. PubMed ID: 33436514 [TBL] [Abstract][Full Text] [Related]
18. Minimal gene set from Geddes BA; Kearsley JVS; Huang J; Zamani M; Muhammed Z; Sather L; Panchal AK; diCenzo GC; Finan TM Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33384333 [TBL] [Abstract][Full Text] [Related]
19. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Gage DJ Microbiol Mol Biol Rev; 2004 Jun; 68(2):280-300. PubMed ID: 15187185 [TBL] [Abstract][Full Text] [Related]
20. Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis. Ferguson S; Major AS; Sullivan JT; Bourke SD; Kelly SJ; Perry BJ; Ronson CW Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]