BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 34017357)

  • 21. Charting oxidized methylcytosines at base resolution.
    Wu H; Zhang Y
    Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global DNA 5-Hydroxymethylcytosine and 5-Formylcytosine Contents Are Decreased in the Early Stage of Hepatocellular Carcinoma.
    Liu J; Jiang J; Mo J; Liu D; Cao D; Wang H; He Y; Wang H
    Hepatology; 2019 Jan; 69(1):196-208. PubMed ID: 30070373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Connections between TET proteins and aberrant DNA modification in cancer.
    Huang Y; Rao A
    Trends Genet; 2014 Oct; 30(10):464-74. PubMed ID: 25132561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-Base Resolution Analysis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics.
    Neri F; Incarnato D; Krepelova A; Rapelli S; Anselmi F; Parlato C; Medana C; Dal Bello F; Oliviero S
    Cell Rep; 2015 Feb; 10(5):674-683. PubMed ID: 25660018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic DNA oxidation: mechanisms and biological significance.
    Xu GL; Walsh CP
    BMB Rep; 2014 Nov; 47(11):609-18. PubMed ID: 25341925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA methylation, its mediators and genome integrity.
    Meng H; Cao Y; Qin J; Song X; Zhang Q; Shi Y; Cao L
    Int J Biol Sci; 2015; 11(5):604-17. PubMed ID: 25892967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymatic analysis of Tet proteins: key enzymes in the metabolism of DNA methylation.
    Shen L; Zhang Y
    Methods Enzymol; 2012; 512():93-105. PubMed ID: 22910204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.
    Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D
    Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decoding the role of TET family dioxygenases in lineage specification.
    Wu X; Li G; Xie R
    Epigenetics Chromatin; 2018 Oct; 11(1):58. PubMed ID: 30290828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells.
    Wheldon LM; Abakir A; Ferjentsik Z; Dudnakova T; Strohbuecker S; Christie D; Dai N; Guan S; Foster JM; Corrêa IR; Loose M; Dixon JE; Sottile V; Johnson AD; Ruzov A
    Cell Rep; 2014 Jun; 7(5):1353-1361. PubMed ID: 24882006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Research advances in TET enzyme and its intermediate product 5hmC].
    Wu J; Fang X; Xia X; Zhang M
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2019 Apr; 44(4):449-454. PubMed ID: 31113923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Weakened N3 Hydrogen Bonding by 5-Formylcytosine and 5-Carboxylcytosine Reduces Their Base-Pairing Stability.
    Dai Q; Sanstead PJ; Peng CS; Han D; He C; Tokmakoff A
    ACS Chem Biol; 2016 Feb; 11(2):470-7. PubMed ID: 26641274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine.
    Fu T; Liu L; Yang QL; Wang Y; Xu P; Zhang L; Liu S; Dai Q; Ji Q; Xu GL; He C; Luo C; Zhang L
    Chem Sci; 2019 Aug; 10(31):7407-7417. PubMed ID: 31489163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TET1 promotes RXRα expression and adipogenesis through DNA demethylation.
    Qian H; Zhao J; Yang X; Wu S; An Y; Qu Y; Li Z; Ge H; Li E; Qi W
    Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Jun; 1866(6):158919. PubMed ID: 33684567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of 5-carboxylcytosine during hepatic differentiation: Potential general role for active demethylation by DNA repair in lineage specification.
    Lewis LC; Lo PC; Foster JM; Dai N; Corrêa IR; Durczak PM; Duncan G; Ramsawhook A; Aithal GP; Denning C; Hannan NR; Ruzov A
    Epigenetics; 2017 Apr; 12(4):277-286. PubMed ID: 28267381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas.
    Eleftheriou M; Pascual AJ; Wheldon LM; Perry C; Abakir A; Arora A; Johnson AD; Auer DT; Ellis IO; Madhusudan S; Ruzov A
    Clin Epigenetics; 2015; 7(1):88. PubMed ID: 26300993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the Epigenome by Vitamin C.
    Young JI; Züchner S; Wang G
    Annu Rev Nutr; 2015; 35():545-64. PubMed ID: 25974700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Tet proteins in enhancer activity and telomere elongation.
    Lu F; Liu Y; Jiang L; Yamaguchi S; Zhang Y
    Genes Dev; 2014 Oct; 28(19):2103-19. PubMed ID: 25223896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study.
    Valentini E; Zampieri M; Malavolta M; Bacalini MG; Calabrese R; Guastafierro T; Reale A; Franceschi C; Hervonen A; Koller B; Bernhardt J; Slagboom PE; Toussaint O; Sikora E; Gonos ES; Breusing N; Grune T; Jansen E; Dollé ME; Moreno-Villanueva M; Sindlinger T; Bürkle A; Ciccarone F; Caiafa P
    Aging (Albany NY); 2016 Aug; 8(9):1896-1922. PubMed ID: 27587280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for novel epigenetic marks within plants.
    Mahmood AM; Dunwell JM
    AIMS Genet; 2019; 6(4):70-87. PubMed ID: 31922011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.