BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34017868)

  • 1. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies.
    Shemiakova T; Ivanova E; Wu WK; Kirichenko TV; Starodubova AV; Orekhov AN
    Front Cardiovasc Med; 2021; 8():660473. PubMed ID: 34017868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Dysfunction: The Hidden Player in the Pathogenesis of Atherosclerosis?
    Ciccarelli G; Conte S; Cimmino G; Maiorano P; Morrione A; Giordano A
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrion as a Selective Target for the Treatment of Atherosclerosis: Role of Mitochondrial DNA Mutations and Defective Mitophagy in the Pathogenesis of Atherosclerosis and Chronic Inflammation.
    Orekhov AN; Poznyak AV; Sobenin IA; Nikifirov NN; Ivanova EA
    Curr Neuropharmacol; 2020; 18(11):1064-1075. PubMed ID: 31744449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Dysfunction in Vascular Wall Cells and Its Role in Atherosclerosis.
    Salnikova D; Orekhova V; Grechko A; Starodubova A; Bezsonov E; Popkova T; Orekhov A
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbance of Mitochondrial Dynamics and Mitochondrial Therapies in Atherosclerosis.
    Markin AM; Khotina VA; Zabudskaya XG; Bogatyreva AI; Starodubova AV; Ivanova E; Nikiforov NG; Orekhov AN
    Life (Basel); 2021 Feb; 11(2):. PubMed ID: 33672784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetics of Arterial-Wall-Specific Mechanisms in Atherosclerosis: Focus on Mitochondrial Mutations.
    Orekhov AN; Ivanova EA; Markin AM; Nikiforov NG; Sobenin IA
    Curr Atheroscler Rep; 2020 Aug; 22(10):54. PubMed ID: 32772280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal programming of atherosclerosis: possible role of the mitochondria.
    Leduc L; Levy E; Bouity-Voubou M; Delvin E
    Eur J Obstet Gynecol Reprod Biol; 2010 Apr; 149(2):127-30. PubMed ID: 20053495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Dysfunction and DNA Damage in the Context of Pathogenesis of Atherosclerosis.
    Shemiakova T; Ivanova E; Grechko AV; Gerasimova EV; Sobenin IA; Orekhov AN
    Biomedicines; 2020 Jun; 8(6):. PubMed ID: 32570831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis.
    Orekhov AN; Gerasimova EV; Sukhorukov VN; Poznyak AV; Nikiforov NG
    Curr Pharm Des; 2021; 27(2):276-292. PubMed ID: 33045961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammatory reactions in the pathogenesis of atherosclerosis.
    Fan J; Watanabe T
    J Atheroscler Thromb; 2003; 10(2):63-71. PubMed ID: 12740479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of mitochondrial DNA damage in the development of atherosclerosis.
    Yu EP; Bennett MR
    Free Radic Biol Med; 2016 Nov; 100():223-230. PubMed ID: 27320189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between Cellular Oxygen Consumption and Atherosclerosis-Associated Mitochondrial Mutations (Variants of the Mitochondrial Genome).
    Orekhov AN; Sinyov VV; Vyssokikh MY; Manukhova L; Marey MV; Angelova PR; Omelchenko AV; Vinokurov AY; Khasanova ZB; Sobenin IA
    Curr Med Chem; 2024 Jun; ():. PubMed ID: 38879762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation.
    Poznyak A; Grechko AV; Poggio P; Myasoedova VA; Alfieri V; Orekhov AN
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy.
    Victor VM; Apostolova N; Herance R; Hernandez-Mijares A; Rocha M
    Curr Med Chem; 2009; 16(35):4654-67. PubMed ID: 19903143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial mutations in atherosclerosis: new solutions in research and possible clinical applications.
    Sobenin IA; Chistiakov DA; Bobryshev YV; Postnov AY; Orekhov AN
    Curr Pharm Des; 2013; 19(33):5942-53. PubMed ID: 23438955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atherosclerosis as an inflammatory disease.
    Tuttolomondo A; Di Raimondo D; Pecoraro R; Arnao V; Pinto A; Licata G
    Curr Pharm Des; 2012; 18(28):4266-88. PubMed ID: 22390643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis.
    Fenyo IM; Gafencu AV
    Immunobiology; 2013 Nov; 218(11):1376-84. PubMed ID: 23886694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid-based gene delivery to macrophage mitochondria for atherosclerosis therapy.
    Zakirov FH; Zhang D; Grechko AV; Wu WK; Poznyak AV; Orekhov AN
    Pharmacol Res Perspect; 2020 Apr; 8(2):e00584. PubMed ID: 32237116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis.
    Gibson MS; Domingues N; Vieira OV
    Front Physiol; 2018; 9():654. PubMed ID: 29997514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.