BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34017982)

  • 1. A comparative analysis of RNA-binding proteins binding models learned from RNAcompete, RNA Bind-n-Seq and eCLIP data.
    Tripto E; Orenstein Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34017982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAcompete methodology and application to determine sequence preferences of unconventional RNA-binding proteins.
    Ray D; Ha KCH; Nie K; Zheng H; Hughes TR; Morris QD
    Methods; 2017 Apr; 118-119():3-15. PubMed ID: 27956239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins.
    Ray D; Kazan H; Chan ET; Peña Castillo L; Chaudhry S; Talukder S; Blencowe BJ; Morris Q; Hughes TR
    Nat Biotechnol; 2009 Jul; 27(7):667-70. PubMed ID: 19561594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RCK: accurate and efficient inference of sequence- and structure-based protein-RNA binding models from RNAcompete data.
    Orenstein Y; Wang Y; Berger B
    Bioinformatics; 2016 Jun; 32(12):i351-i359. PubMed ID: 27307637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNANetMotif: Identifying sequence-structure RNA network motifs in RNA-protein binding sites.
    Ma H; Wen H; Xue Z; Li G; Zhang Z
    PLoS Comput Biol; 2022 Jul; 18(7):e1010293. PubMed ID: 35819951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data.
    Orenstein Y; Shamir R
    Nucleic Acids Res; 2014 Apr; 42(8):e63. PubMed ID: 24500199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks.
    Lin J; Zhang Y; Frankel WN; Ouyang Z
    PLoS Comput Biol; 2019 Aug; 15(8):e1007227. PubMed ID: 31425505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CLIPdb: a CLIP-seq database for protein-RNA interactions.
    Yang YC; Di C; Hu B; Zhou M; Liu Y; Song N; Li Y; Umetsu J; Lu ZJ
    BMC Genomics; 2015 Feb; 16(1):51. PubMed ID: 25652745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data.
    Fukunaga T; Ozaki H; Terai G; Asai K; Iwasaki W; Kiryu H
    Genome Biol; 2014 Jan; 15(1):R16. PubMed ID: 24447569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Bioinformatic Analysis.
    Freeberg MA; Kim JK
    Methods Mol Biol; 2016; 1361():91-104. PubMed ID: 26483018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. oRNAment: a database of putative RNA binding protein target sites in the transcriptomes of model species.
    Benoit Bouvrette LP; Bovaird S; Blanchette M; Lécuyer E
    Nucleic Acids Res; 2020 Jan; 48(D1):D166-D173. PubMed ID: 31724725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.