These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34017993)

  • 1. Machine learning builds full-QM precision protein force fields in seconds.
    Han Y; Wang Z; Wei Z; Liu J; Li J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34017993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy.
    Wang Z; Han Y; Li J; He X
    J Phys Chem B; 2020 Apr; 124(15):3027-3035. PubMed ID: 32208716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
    Wang H; Yang W
    J Chem Theory Comput; 2019 Feb; 15(2):1409-1417. PubMed ID: 30550274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep transfer learning-based protocol accelerates full quantum mechanics calculation of protein.
    Han Y; Wang Z; Chen A; Ali I; Cai J; Ye S; Wei Z; Li J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36516300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning.
    Cheng Z; Du J; Zhang L; Ma J; Li W; Li S
    Phys Chem Chem Phys; 2022 Jan; 24(3):1326-1337. PubMed ID: 34718360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds.
    Han Y; Wang Z; Chen A; Ali I; Cai J; Ye S; Li J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in First-Principles Based Molecular Dynamics.
    Mouvet F; Villard J; Bolnykh V; Rothlisberger U
    Acc Chem Res; 2022 Feb; 55(3):221-230. PubMed ID: 35026115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph-convolutional neural networks for (QM)ML/MM molecular dynamics simulations.
    Hofstetter A; Böselt L; Riniker S
    Phys Chem Chem Phys; 2022 Sep; 24(37):22497-22512. PubMed ID: 36106790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding Neural Network/Molecular Mechanics Simulations.
    Lier B; Poliak P; Marquetand P; Westermayr J; Oostenbrink C
    J Phys Chem Lett; 2022 May; 13(17):3812-3818. PubMed ID: 35467875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems.
    Böselt L; Thürlemann M; Riniker S
    J Chem Theory Comput; 2021 May; 17(5):2641-2658. PubMed ID: 33818085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.
    Jin X; Zhang JZ; He X
    J Phys Chem A; 2017 Mar; 121(12):2503-2514. PubMed ID: 28264557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.
    Shen L; Yang W
    J Chem Theory Comput; 2018 Mar; 14(3):1442-1455. PubMed ID: 29438614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantum mechanical computational method for modeling electrostatic and solvation effects of protein.
    Wang X; Li Y; Gao Y; Yang Z; Lu C; Zhu T
    Sci Rep; 2018 Apr; 8(1):5475. PubMed ID: 29615707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions.
    Pan X; Yang J; Van R; Epifanovsky E; Ho J; Huang J; Pu J; Mei Y; Nam K; Shao Y
    J Chem Theory Comput; 2021 Sep; 17(9):5745-5758. PubMed ID: 34468138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins.
    Vennelakanti V; Nazemi A; Mehmood R; Steeves AH; Kulik HJ
    Curr Opin Struct Biol; 2022 Feb; 72():9-17. PubMed ID: 34388673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies.
    Kamerlin SC; Haranczyk M; Warshel A
    J Phys Chem B; 2009 Feb; 113(5):1253-72. PubMed ID: 19055405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.