These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34018057)

  • 1. Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and malignant lesions.
    Romeo V; Cuocolo R; Apolito R; Stanzione A; Ventimiglia A; Vitale A; Verde F; Accurso A; Amitrano M; Insabato L; Gencarelli A; Buonocore R; Argenzio MR; Cascone AM; Imbriaco M; Maurea S; Brunetti A
    Eur Radiol; 2021 Dec; 31(12):9511-9519. PubMed ID: 34018057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the risk stratification of gastrointestinal stromal tumors using machine learning-based ultrasound radiomics.
    Zhuo M; Tang Y; Guo J; Qian Q; Xue E; Chen Z
    J Med Ultrason (2001); 2024 Jan; 51(1):71-82. PubMed ID: 37798591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of machine learning software to classify breast lesions using BI-RADS radiomic features on ultrasound images.
    Fleury E; Marcomini K
    Eur Radiol Exp; 2019 Aug; 3(1):34. PubMed ID: 31385114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: a multicenter study.
    Cuocolo R; Stanzione A; Faletti R; Gatti M; Calleris G; Fornari A; Gentile F; Motta A; Dell'Aversana S; Creta M; Longo N; Gontero P; Cirillo S; Fonio P; Imbriaco M
    Eur Radiol; 2021 Oct; 31(10):7575-7583. PubMed ID: 33792737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Optimized Radiomics Model Based on Automated Breast Volume Scan Images to Identify Breast Lesions: Comparison of Machine Learning Methods: Comparison of Machine Learning Methods.
    Wang H; Yang X; Ma S; Zhu K; Guo S
    J Ultrasound Med; 2022 Jul; 41(7):1643-1655. PubMed ID: 34609750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution.
    Ji Y; Li H; Edwards AV; Papaioannou J; Ma W; Liu P; Giger ML
    Cancer Imaging; 2019 Sep; 19(1):64. PubMed ID: 31533838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors.
    von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Jung M; Jungmann PM; Russe MF; Foreman SC; Gassert FG; Gassert FT; Schwaiger BJ; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS
    Eur Radiol; 2022 Sep; 32(9):6247-6257. PubMed ID: 35396665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics.
    Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L
    Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benign and malignant classification of breast tumor ultrasound images using conventional radiomics and transfer learning features: A multicenter retrospective study.
    Tian R; Lu G; Tang S; Sang L; Ma H; Qian W; Yang W
    Med Eng Phys; 2024 Mar; 125():104117. PubMed ID: 38508797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning-Based Ultrasomics Improves the Diagnostic Performance in Differentiating Focal Nodular Hyperplasia and Atypical Hepatocellular Carcinoma.
    Li W; Lv XZ; Zheng X; Ruan SM; Hu HT; Chen LD; Huang Y; Li X; Zhang CQ; Xie XY; Kuang M; Lu MD; Zhuang BW; Wang W
    Front Oncol; 2021; 11():544979. PubMed ID: 33842303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Radiomics Study: Classification of Breast Lesions by Textural Features from Mammography Images.
    Letchumanan N; Wong JHD; Tan LK; Ab Mumin N; Ng WL; Chan WY; Rahmat K
    J Digit Imaging; 2023 Aug; 36(4):1533-1540. PubMed ID: 37253893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of radiomics on the breast ultrasound radiologist's clinical practice: From lumpologist to data wrangler.
    Fleury EFC; Marcomini K
    Eur J Radiol; 2020 Oct; 131():109197. PubMed ID: 32795725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study.
    Wang H; Zhang J; Bao S; Liu J; Hou F; Huang Y; Chen H; Duan S; Hao D; Liu J
    J Magn Reson Imaging; 2020 Sep; 52(3):873-882. PubMed ID: 32112598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR.
    Sun K; Jiao Z; Zhu H; Chai W; Yan X; Fu C; Cheng JZ; Yan F; Shen D
    J Transl Med; 2021 Oct; 19(1):443. PubMed ID: 34689804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning.
    Lee HJ; Nguyen AT; Ki SY; Lee JE; Do LN; Park MH; Lee JS; Kim HJ; Park I; Lim HS
    Front Oncol; 2021; 11():744460. PubMed ID: 34926256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI radiomics-based machine-learning classification of bone chondrosarcoma.
    Gitto S; Cuocolo R; Albano D; Chianca V; Messina C; Gambino A; Ugga L; Cortese MC; Lazzara A; Ricci D; Spairani R; Zanchetta E; Luzzati A; Brunetti A; Parafioriti A; Sconfienza LM
    Eur J Radiol; 2020 Jul; 128():109043. PubMed ID: 32438261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound Radiomics-Based Logistic Regression Model to Differentiate Between Benign and Malignant Breast Nodules.
    Shi S; An X; Li Y
    J Ultrasound Med; 2023 Apr; 42(4):869-879. PubMed ID: 36149670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using rADioMIcs and machine learning with ultrasonography for the differential diagnosis of myometRiAL tumors (the ADMIRAL pilot study). Radiomics and differential diagnosis of myometrial tumors.
    Chiappa V; Interlenghi M; Salvatore C; Bertolina F; Bogani G; Ditto A; Martinelli F; Castiglioni I; Raspagliesi F
    Gynecol Oncol; 2021 Jun; 161(3):838-844. PubMed ID: 33867144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.