These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34018272)
1. Trophic state in a tropical lake based on Chlorophyll-a profiler data and Sentinel-2 images: The onset of an algal bloom event. Pantoja DA; Vega-Álvarez NA; Gasca-Ortiz T Water Environ Res; 2021 Oct; 93(10):2185-2197. PubMed ID: 34018272 [TBL] [Abstract][Full Text] [Related]
2. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Dörnhöfer K; Klinger P; Heege T; Oppelt N Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864 [TBL] [Abstract][Full Text] [Related]
3. Monitoring trophic status using in situ data and Sentinel-2 MSI algorithm: lesson from Lake Malombe, Malawi. Makwinja R; Inagaki Y; Sagawa T; Obubu JP; Habineza E; Haaziyu W Environ Sci Pollut Res Int; 2023 Mar; 30(11):29755-29772. PubMed ID: 36418816 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203 [TBL] [Abstract][Full Text] [Related]
5. Algal biomass mapping of eutrophic lakes using a machine learning approach with MODIS images. Lai L; Zhang Y; Cao Z; Liu Z; Yang Q Sci Total Environ; 2023 Jul; 880():163357. PubMed ID: 37028659 [TBL] [Abstract][Full Text] [Related]
6. [Monitor of Cyanobacteria Bloom in Lake Taihu from 2001 to 2013 Based on MODIS Temporal Spectral Data]. Li Y; Zhang LF; Huang CP; Wang JN; Cen Y Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1406-11. PubMed ID: 30001016 [TBL] [Abstract][Full Text] [Related]
7. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
8. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations. Zhang Y; Hu M; Shi K; Zhang M; Han T; Lai L; Zhan P Water Res; 2021 Dec; 207():117786. PubMed ID: 34731665 [TBL] [Abstract][Full Text] [Related]
10. Satellite mapping reveals phytoplankton biomass's spatio-temporal dynamics and responses to environmental factors in a eutrophic inland lake. Lai L; Zhang Y; Han T; Zhang M; Cao Z; Liu Z; Yang Q; Chen X J Environ Manage; 2024 Jun; 360():121134. PubMed ID: 38749137 [TBL] [Abstract][Full Text] [Related]
11. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA. Isenstein EM; Trescott A; Park MH Water Environ Res; 2014 Dec; 86(12):2271-8. PubMed ID: 25654929 [TBL] [Abstract][Full Text] [Related]
12. Review of characterization, factors, impacts, and solutions of Lake eutrophication: lesson for lake Tana, Ethiopia. Ayele HS; Atlabachew M Environ Sci Pollut Res Int; 2021 Mar; 28(12):14233-14252. PubMed ID: 33517530 [TBL] [Abstract][Full Text] [Related]
13. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Zhang Y; Zhou Y; Shi K; Qin B; Yao X; Zhang Y Water Res; 2018 Mar; 131():255-263. PubMed ID: 29304379 [TBL] [Abstract][Full Text] [Related]
14. Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan). Rakocevic-Nedovic J; Hollert H Environ Sci Pollut Res Int; 2005; 12(3):146-52. PubMed ID: 15986998 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of algal chlorophyll and nutrient relations and the N:P ratios along with trophic status and light regime in 60 Korea reservoirs. Mamun M; Kwon S; Kim JE; An KG Sci Total Environ; 2020 Nov; 741():140451. PubMed ID: 32886973 [TBL] [Abstract][Full Text] [Related]
16. Simulating chlorophyll-a fluorescence changing rate and phycocyanin fluorescence by using a multi-sensor system in Lake Taihu, China. Yang J; Holbach A; Stewardson MJ; Wilhelms A; Qin Y; Zheng B; Zou H; Qin B; Zhu G; Moldaenke C; Norra S Chemosphere; 2021 Feb; 264(Pt 2):128482. PubMed ID: 33038735 [TBL] [Abstract][Full Text] [Related]
17. Trophic state and limiting nutrient evaluations using trophic state/level index methods: a case study of Borçka Dam Lake. Bilgin A Environ Monit Assess; 2020 Nov; 192(12):794. PubMed ID: 33244660 [TBL] [Abstract][Full Text] [Related]
18. Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine. Zhao D; Huang J; Li Z; Yu G; Shen H Sci Total Environ; 2024 Feb; 912():169152. PubMed ID: 38061660 [TBL] [Abstract][Full Text] [Related]
19. Impacts of storm events on chlorophyll-a variations and controlling factors for algal bloom in a river receiving reclaimed water. Liao A; Han D; Song X; Yang S J Environ Manage; 2021 Nov; 297():113376. PubMed ID: 34325374 [TBL] [Abstract][Full Text] [Related]
20. [Changes in Algal Particles and Their Water Quality Effects in the Outflow River of Taihu Lake]. Guo YL; Xu H; Chen XQ; Zheng JZ; Zhan X; Zhu GW; Zhu MY Huan Jing Ke Xue; 2021 Jan; 42(1):242-250. PubMed ID: 33372476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]