These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34018272)
21. [Spatial distribution pattern and stock estimation of nutrients during bloom season in Lake Taihu]. Jin YW; Zhu GW; Xu H; Zhu MY Huan Jing Ke Xue; 2015 Mar; 36(3):936-45. PubMed ID: 25929061 [TBL] [Abstract][Full Text] [Related]
22. Long-term spatial-temporal monitoring of eutrophication in Lake Burdur using remote sensing data. Tuygun GT; Salgut S; Elçi A Water Sci Technol; 2023 May; 87(9):2184-2194. PubMed ID: 37186623 [TBL] [Abstract][Full Text] [Related]
23. Identifying the drivers of chlorophyll-a dynamics in a landscape lake recharged by reclaimed water using interpretable machine learning. Wang C; Liu J; Qiu C; Su X; Ma N; Li J; Wang S; Qu S Sci Total Environ; 2024 Jan; 906():167483. PubMed ID: 37832666 [TBL] [Abstract][Full Text] [Related]
24. Monitoring cyanoHABs and water quality in Laguna Lake (Philippines) with Sentinel-2 satellites during the 2020 Pacific typhoon season. Caballero I; Navarro G Sci Total Environ; 2021 Sep; 788():147700. PubMed ID: 34029825 [TBL] [Abstract][Full Text] [Related]
25. [Spatial and Temporal Dynamics of Floating Algal Blooms in Lake Chaohu in 2016 and Their Environmental Drivers]. Hu MQ; Zhang YC; Ma RH; Zhang YX Huan Jing Ke Xue; 2018 Nov; 39(11):4925-4937. PubMed ID: 30628214 [TBL] [Abstract][Full Text] [Related]
26. [Response Characteristics of Algal Chlorophyll-a to Nitrogen, Phosphorus and Water Temperature in Lake Erhai Based on Quantile Regression]. Chen XH; Li XP; Qian XY; Hu SQ Huan Jing Ke Xue; 2017 Jan; 38(1):113-120. PubMed ID: 29965037 [TBL] [Abstract][Full Text] [Related]
27. Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China. Lyu L; Song K; Wen Z; Liu G; Shang Y; Li S; Tao H; Wang X; Hou J Opt Express; 2022 Mar; 30(7):10329-10345. PubMed ID: 35473003 [TBL] [Abstract][Full Text] [Related]
28. Assessment of predictive models for chlorophyll-a concentration of a tropical lake. Malek S; Syed Ahmad SM; Singh SK; Milow P; Salleh A BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S12. PubMed ID: 22372859 [TBL] [Abstract][Full Text] [Related]
29. Establishing eutrophication assessment standards for four lake regions, China. Huo S; Ma C; Xi B; Su J; Zan F; Ji D; He Z J Environ Sci (China); 2013 Oct; 25(10):2014-22. PubMed ID: 24494487 [TBL] [Abstract][Full Text] [Related]
30. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study. Li Q; Hu W; Zhai S Environ Manage; 2016 Jan; 57(1):237-50. PubMed ID: 26296739 [TBL] [Abstract][Full Text] [Related]
31. Trophic state modeling for shallow freshwater reservoir: a new approach. Markad AT; Landge AT; Nayak BB; Inamdar AB; Mishra AK Environ Monit Assess; 2019 Aug; 191(9):586. PubMed ID: 31440835 [TBL] [Abstract][Full Text] [Related]
32. Hysteresis effects of meteorological variation-induced algal blooms: A case study based on satellite-observed data from Dianchi Lake, China (1988-2020). Wang Q; Sun L; Zhu Y; Wang S; Duan C; Yang C; Zhang Y; Liu D; Zhao L; Tang J Sci Total Environ; 2022 Mar; 812():152558. PubMed ID: 34952086 [TBL] [Abstract][Full Text] [Related]
33. Spatial and temporal distributions of microplastics and their macroscopic relationship with algal blooms in Chaohu Lake, China. Liu H; Sun K; Liu X; Yao R; Cao W; Zhang L; Wang X J Contam Hydrol; 2022 Jun; 248():104028. PubMed ID: 35640420 [TBL] [Abstract][Full Text] [Related]
34. Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China. Hu M; Zhang Y; Ma R; Xue K; Cao Z; Chu Q; Jing Y Sci Total Environ; 2021 Jun; 771():144811. PubMed ID: 33545474 [TBL] [Abstract][Full Text] [Related]
35. Hotspot analysis of spatial distribution of algae blooms in small and medium water bodies. Zabaleta B; Achkar M; Aubriot L Environ Monit Assess; 2021 Mar; 193(4):221. PubMed ID: 33763714 [TBL] [Abstract][Full Text] [Related]
36. Remote sensing models using Landsat satellite data to monitor algal blooms in Lake Champlain. Trescott A; Park MH Water Sci Technol; 2013; 67(5):1113-20. PubMed ID: 23416605 [TBL] [Abstract][Full Text] [Related]
37. A satellite-based hybrid model for trophic state evaluation in inland waters across China. Liu Y; Ke Y; Wu H; Zhang C; Chen X Environ Res; 2023 May; 225():115509. PubMed ID: 36801233 [TBL] [Abstract][Full Text] [Related]
38. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Yang Y; Zhang X; Gao W; Zhang Y; Hou X Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490 [TBL] [Abstract][Full Text] [Related]
39. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring. Boucher J; Weathers KC; Norouzi H; Steele B Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690 [TBL] [Abstract][Full Text] [Related]
40. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers]. Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]