These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34018493)

  • 1. Hydrocarbon contamination in angström-scale channels.
    Sajja R; You Y; Qi R; Goutham S; Bhardwaj A; Rakowski A; Haigh S; Keerthi A; Radha B
    Nanoscale; 2021 Jun; 13(21):9553-9560. PubMed ID: 34018493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clogging and Unclogging of Hydrocarbon-Contaminated Nanochannels.
    Javdani Z; Hassani N; Faraji F; Zhou R; Sun C; Radha B; Neyts E; Peeters FM; Neek-Amal M
    J Phys Chem Lett; 2022 Dec; 13(49):11454-11463. PubMed ID: 36469310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal-organic frameworks.
    Li X; Jiang G; Jian M; Zhao C; Hou J; Thornton AW; Zhang X; Liu JZ; Freeman BD; Wang H; Jiang L; Zhang H
    Nat Commun; 2023 Jan; 14(1):286. PubMed ID: 36653373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative characterization of liquids flowing in geometrically controlled sub-100 nm nanofluidic channels.
    Kazoe Y; Ikeda K; Mino K; Morikawa K; Mawatari K; Kitamori T
    Anal Sci; 2023 Jun; 39(6):779-784. PubMed ID: 36884162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas Flow at the Ultra-nanoscale: Universal Predictive Model and Validation in Nanochannels of Ångstrom-Level Resolution.
    Scorrano G; Bruno G; Di Trani N; Ferrari M; Pimpinelli A; Grattoni A
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32233-32238. PubMed ID: 30185043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-Nanoporous Engineered Fibrous Aerogel Molecular Sieves with Nanogating Channels for Reversible Molecular Separation.
    Zhang F; Si Y; Yu J; Ding B
    Small; 2022 Jun; 18(25):e2202173. PubMed ID: 35608287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and Hydrocarbon/Fluorocarbon Sorption of a Metal-Organic Framework with Fluorinated Channels.
    Xie J; Sun F; Wang C; Pan Q
    Materials (Basel); 2016 Apr; 9(5):. PubMed ID: 28773449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin Silica Membranes with Highly Ordered and Perpendicular Nanochannels for Precise and Fast Molecular Separation.
    Lin X; Yang Q; Ding L; Su B
    ACS Nano; 2015 Nov; 9(11):11266-77. PubMed ID: 26458217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic Energy Conversion in Self-Assembled 2D Nanofluidic Channels with Janus Nanobuilding Blocks.
    Cheng H; Zhou Y; Feng Y; Geng W; Liu Q; Guo W; Jiang L
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-of-the-Art and Future Prospects for Atomically Thin Membranes from 2D Materials.
    Prozorovska L; Kidambi PR
    Adv Mater; 2018 Dec; 30(52):e1801179. PubMed ID: 30085371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Condensation in One-Dimensional Dead-End Nanochannels.
    Zhong J; Zandavi SH; Li H; Bao B; Persad AH; Mostowfi F; Sinton D
    ACS Nano; 2017 Jan; 11(1):304-313. PubMed ID: 27977139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation.
    Liang Y; Zhu Y; Liu C; Lee KR; Hung WS; Wang Z; Li Y; Elimelech M; Jin J; Lin S
    Nat Commun; 2020 Apr; 11(1):2015. PubMed ID: 32332724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble nucleation and growth in nanochannels.
    Bao B; Zandavi SH; Li H; Zhong J; Jatukaran A; Mostowfi F; Sinton D
    Phys Chem Chem Phys; 2017 Mar; 19(12):8223-8229. PubMed ID: 28271101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Gating of Ion Transport in Three-Dimensional Metal-Organic Framework Sub-Nanochannels with Confined Light-Responsive Azobenzene Molecules.
    Qian T; Zhang H; Li X; Hou J; Zhao C; Gu Q; Wang H
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):13051-13056. PubMed ID: 32343468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics.
    Höltzel A; Tallarek U
    J Sep Sci; 2007 Jul; 30(10):1398-419. PubMed ID: 17623420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confined Structures and Selective Mass Transport of Organic Liquids in Graphene Nanochannels.
    Jiao S; Zhou K; Wu M; Li C; Cao X; Zhang L; Xu Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37014-37022. PubMed ID: 30286295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size effect in ion transport through angstrom-scale slits.
    Esfandiar A; Radha B; Wang FC; Yang Q; Hu S; Garaj S; Nair RR; Geim AK; Gopinadhan K
    Science; 2017 Oct; 358(6362):511-513. PubMed ID: 29074772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.
    Boutilier MSH; Jang D; Idrobo JC; Kidambi PR; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2017 Jun; 11(6):5726-5736. PubMed ID: 28609103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.