These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 34018501)
1. Fixation of atmospheric CO Muthuramalingam S; Velusamy M; Mayilmurugan R Dalton Trans; 2021 Jun; 50(23):7984-7994. PubMed ID: 34018501 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Conversion of Atmospheric CO Muthuramalingam S; Sankaralingam M; Velusamy M; Mayilmurugan R Inorg Chem; 2019 Oct; 58(19):12975-12985. PubMed ID: 31535857 [TBL] [Abstract][Full Text] [Related]
3. Nickel(II) Complexes of Tripodal Ligands as Catalysts for Fixation of Atmospheric CO Muthuramalingam S; Velusamy M; Singh Rajput S; Alam M; Mayilmurugan R Chem Asian J; 2023 Mar; 18(6):e202201204. PubMed ID: 36734191 [TBL] [Abstract][Full Text] [Related]
4. Rapid atmospheric carbon dioxide fixation by nickel(II) complexes: meridionally coordinated diazepane-based 3N ligands facilitate fixation. Ajaykamal T; Sharma M; Islam NS; Palaniandavar M Dalton Trans; 2021 Jun; 50(23):8045-8056. PubMed ID: 34018498 [TBL] [Abstract][Full Text] [Related]
5. Catalytic fixation of atmospheric carbon dioxide by copper(ii) complexes of bidentate ligands. Muthuramalingam S; Khamrang T; Velusamy M; Mayilmurugan R Dalton Trans; 2017 Nov; 46(46):16065-16076. PubMed ID: 29119984 [TBL] [Abstract][Full Text] [Related]
6. Novel nickel(ii) complexes of sterically modified linear N4 ligands: effect of ligand stereoelectronic factors and solvent of coordination on nickel(ii) spin-state and catalytic alkane hydroxylation. Sankaralingam M; Vadivelu P; Palaniandavar M Dalton Trans; 2017 Jun; 46(22):7181-7193. PubMed ID: 28418046 [TBL] [Abstract][Full Text] [Related]
7. Chemical fixation of atmospheric CO Jana NC; Sun YC; Herchel R; Nandy R; Brandão P; Bagh B; Wang XY; Panja A Dalton Trans; 2024 Jul; 53(27):11514-11530. PubMed ID: 38916290 [TBL] [Abstract][Full Text] [Related]
8. Nickel(II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis. Balamurugan M; Mayilmurugan R; Suresh E; Palaniandavar M Dalton Trans; 2011 Oct; 40(37):9413-24. PubMed ID: 21850329 [TBL] [Abstract][Full Text] [Related]
9. Nickel(II) complexes of pentadentate N5 ligands as catalysts for alkane hydroxylation by using m-CPBA as oxidant: a combined experimental and computational study. Sankaralingam M; Balamurugan M; Palaniandavar M; Vadivelu P; Suresh CH Chemistry; 2014 Sep; 20(36):11346-61. PubMed ID: 25100547 [TBL] [Abstract][Full Text] [Related]
10. Syntheses, X-ray structures, and physicochemical properties of phenoxo-bridged dinuclear nickel(II) complexes: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate. Mandal S; Balamurugan V; Lloret F; Mukherjee R Inorg Chem; 2009 Aug; 48(16):7544-56. PubMed ID: 19610657 [TBL] [Abstract][Full Text] [Related]
11. Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant. Mayilmurugan R; Stoeckli-Evans H; Suresh E; Palaniandavar M Dalton Trans; 2009 Jul; (26):5101-14. PubMed ID: 19562169 [TBL] [Abstract][Full Text] [Related]
12. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols. Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419 [TBL] [Abstract][Full Text] [Related]
14. Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex. Kunishita A; Doi Y; Kubo M; Ogura T; Sugimoto H; Itoh S Inorg Chem; 2009 Jun; 48(11):4997-5004. PubMed ID: 19374371 [TBL] [Abstract][Full Text] [Related]
15. Novel square pyramidal iron(III) complexes of linear tetradentate bis(phenolate) ligands as structural and reactive models for intradiol-cleaving 3,4-PCD enzymes: Quinone formation vs. intradiol cleavage. Mayilmurugan R; Sankaralingam M; Suresh E; Palaniandavar M Dalton Trans; 2010 Oct; 39(40):9611-25. PubMed ID: 20835480 [TBL] [Abstract][Full Text] [Related]
16. Weak interactions modulating the dimensionality in supramolecular architectures in three new nickel(II)-hydrazone complexes, magnetostructural correlation, and catalytic potential for epoxidation of alkenes under phase transfer conditions. Sadhukhan D; Ray A; Pilet G; Rizzoli C; Rosair GM; Gómez-García CJ; Signorella S; Bellú S; Mitra S Inorg Chem; 2011 Sep; 50(17):8326-39. PubMed ID: 21797196 [TBL] [Abstract][Full Text] [Related]
17. New mechanistic insight into the coupling reactions of CO2 and epoxides in the presence of zinc complexes. Kim HS; Kim JJ; Lee SD; Lah MS; Moon D; Jang HG Chemistry; 2003 Feb; 9(3):678-86. PubMed ID: 12569460 [TBL] [Abstract][Full Text] [Related]
18. Solvent- and Co-Catalyst-Free Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by Recyclable Bifunctional Niobium Complexes. Wen Q; Yuan X; Zhou Q; Yang HJ; Jiang Q; Hu J; Guo CY Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176413 [TBL] [Abstract][Full Text] [Related]
19. Co-Catalyst-Free Chemical Fixation of CO Singh Dhankhar S; Ugale B; Nagaraja CM Chem Asian J; 2020 Aug; 15(16):2403-2427. PubMed ID: 32524760 [TBL] [Abstract][Full Text] [Related]
20. Triazine-based Organic Polymer-catalysed Conversion of Epoxide to Cyclic Carbonate under Ambient CO Biswas T; Halder A; Paliwal KS; Mitra A; Tudu G; Banerjee R; Mahalingam V Chem Asian J; 2020 Jun; 15(11):1683-1687. PubMed ID: 32270910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]