These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34018942)

  • 61. An Adaptive Particle Weighting Strategy for ECG Denoising Using Marginalized Particle Extended Kalman Filter: An Evaluation in Arrhythmia Contexts.
    Hesar HD; Mohebbi M
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1581-1592. PubMed ID: 28541230
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of Washable Silver Printed Textile Electrodes for Long-Term ECG Monitoring.
    Nigusse AB; Malengier B; Mengistie DA; Tseghai GB; Van Langenhove L
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142899
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Applicability of a Textile ECG-Belt for Unattended Sleep Apnoea Monitoring in a Home Setting.
    Fontana P; Martins NRA; Camenzind M; Boesch M; Baty F; Schoch OD; Brutsche MH; Rossi RM; Annaheim S
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370241
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Deterioration of R-Wave Detection in Pathology and Noise: A Comprehensive Analysis Using Simultaneous Truth and Performance Level Estimation.
    Kashif M; Jonas SM; Deserno TM
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2163-2175. PubMed ID: 27913321
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.
    Lidón-Roger JV; Prats-Boluda G; Ye-Lin Y; Garcia-Casado J; Garcia-Breijo E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29361722
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Accurate wavelet thresholding method for ECG signals.
    Yu K; Feng L; Chen Y; Wu M; Zhang Y; Zhu P; Chen W; Wu Q; Hao J
    Comput Biol Med; 2024 Feb; 169():107835. PubMed ID: 38096762
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Artificial Intelligence-Based Atrial Fibrillation Recognition Method for Motion Artifact-Contaminated Electrocardiogram Signals Preprocessed by Adaptive Filtering Algorithm.
    Zhang H; Zhao H; Guo Z
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931572
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cancellation of artifacts in ECG signals using block adaptive filtering techniques.
    Rahman MZ; Shaik RA; Reddy DV
    Adv Exp Med Biol; 2011; 696():505-13. PubMed ID: 21431591
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Anisotropic median-diffusion for filtering noisy electrocardiogram signals.
    de Melo MA; Kim HY; Nicolosi DE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2562-5. PubMed ID: 19163226
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Removing movement artifacts from equine ECG recordings acquired with textile electrodes.
    Lanata A; Guidi A; Baragli P; Paradiso R; Valenza G; Scilingo EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1955-8. PubMed ID: 26736667
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Grid mapping: a novel method of signal quality evaluation on a single lead electrocardiogram.
    Li Y; Tang X
    Australas Phys Eng Sci Med; 2017 Dec; 40(4):895-907. PubMed ID: 29075993
    [TBL] [Abstract][Full Text] [Related]  

  • 72. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.
    El B'charri O; Latif R; Elmansouri K; Abenaou A; Jenkal W
    Biomed Eng Online; 2017 Feb; 16(1):26. PubMed ID: 28173806
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Applicability of multiresolution wavelet analysis for QRS-waves detection.
    Fedotov AA; Akulova AS; Akulov SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3793-3796. PubMed ID: 28269112
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Noise-assisted data processing with empirical mode decomposition in biomedical signals.
    Karagiannis A; Constantinou P
    IEEE Trans Inf Technol Biomed; 2011 Jan; 15(1):11-8. PubMed ID: 21075730
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An improved algorithm for respiration signal extraction from electrocardiogram measured by conductive textile electrodes using instantaneous frequency estimation.
    Park SB; Noh YS; Park SJ; Yoon HR
    Med Biol Eng Comput; 2008 Feb; 46(2):147-58. PubMed ID: 18210178
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising.
    Wang H; Ma Y; Zhang A; Lin D; Qi Y; Li J
    Comput Math Methods Med; 2023; 2023():6737102. PubMed ID: 36818542
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Elimination of Random Mixed Noise in ECG Using Convolutional Denoising Autoencoder With Transformer Encoder.
    Chen M; Li Y; Zhang L; Liu L; Han B; Shi W; Wei S
    IEEE J Biomed Health Inform; 2024 Apr; 28(4):1993-2004. PubMed ID: 38241105
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adaptive Spectro-Temporal Filtering for Electrocardiogram Signal Enhancement.
    Tobon DP; Falk TH
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):421-428. PubMed ID: 27959833
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Improved NLMS-based adaptive denoising method for ECG signals.
    Wang F; Wang Q; Liu F; Chen J; Fu L; Zhao F
    Technol Health Care; 2021; 29(2):305-316. PubMed ID: 33459674
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cancellation of artifacts in ECG signals using a normalized adaptive neural filter.
    Wu Y; Rangayyan RM; Ng SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2552-5. PubMed ID: 18002515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.