BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 34019290)

  • 1. Analysis of Myc Chromatin Binding by Calibrated ChIP-Seq Approach.
    Cameron DP; Kuzin V; Baranello L
    Methods Mol Biol; 2021; 2318():161-185. PubMed ID: 34019290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CATCH-UP: A High-Throughput Upstream-Pipeline for Bulk ATAC-Seq and ChIP-Seq Data.
    Riva SG; Georgiades E; Gur ER; Baxter M; Hughes JR
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37811941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing histone ChIP-seq data with a bin-based probability of being signal.
    Hecht V; Dong K; Rajesh S; Shpilker P; Wekhande S; Shoresh N
    PLoS Comput Biol; 2023 Oct; 19(10):e1011568. PubMed ID: 37862349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Genomic Landscape: An In-depth ChIP-seq Analysis Protocol for Uncovering Protein-DNA Interactions.
    Zeng L; Zhang B
    Curr Protoc; 2023 Oct; 3(10):e909. PubMed ID: 37830781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of mouse hepatic non-parenchymal cells or nuclei for use in ChIP-seq and other next-generation sequencing approaches.
    Troutman TD; Bennett H; Sakai M; Seidman JS; Heinz S; Glass CK
    STAR Protoc; 2021 Mar; 2(1):100363. PubMed ID: 33748781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of algorithm performance in ChIP-seq peak detection.
    Wilbanks EG; Facciotti MT
    PLoS One; 2010 Jul; 5(7):e11471. PubMed ID: 20628599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titration-based normalization of antibody amount improves consistency of ChIP-seq experiments.
    Caride A; Jang JS; Shi GX; Lenz S; Zhong J; Kim KH; Allen M; Robertson KD; Farrugia G; Ordog T; Ertekin-Taner N; Lee JH
    BMC Genomics; 2023 Apr; 24(1):171. PubMed ID: 37016279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BayesPeak: Bayesian analysis of ChIP-seq data.
    Spyrou C; Stark R; Lynch AG; Tavaré S
    BMC Bioinformatics; 2009 Sep; 10():299. PubMed ID: 19772557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. peaksat: an R package for ChIP-seq peak saturation analysis.
    Boyd JR; Gao C; Quinn K; Fritz A; Stein J; Stein G; Glass K; Frietze S
    BMC Genomics; 2023 Jan; 24(1):43. PubMed ID: 36698077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSA: a web service for the complete process of ChIP-Seq analysis.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 15):515. PubMed ID: 31874601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential peak calling of ChIP-seq signals with replicates with THOR.
    Allhoff M; Seré K; F Pires J; Zenke M; G Costa I
    Nucleic Acids Res; 2016 Nov; 44(20):e153. PubMed ID: 27484474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak Scores Significantly Depend on the Relationships between Contextual Signals in ChIP-Seq Peaks.
    Vishnevsky OV; Bocharnikov AV; Ignatieva EV
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of peak callers used for DNase-Seq data.
    Koohy H; Down TA; Spivakov M; Hubbard T
    PLoS One; 2014; 9(5):e96303. PubMed ID: 24810143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin-bound protein colocalization analysis using bedGraph2Cluster and PanChIP.
    Lee H; Sanidas I; Dyson NJ; Lawrence MS
    STAR Protoc; 2023 Mar; 4(1):101991. PubMed ID: 36607812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data.
    Qin Q; Fan J; Zheng R; Wan C; Mei S; Wu Q; Sun H; Brown M; Zhang J; Meyer CA; Liu XS
    Genome Biol; 2020 Feb; 21(1):32. PubMed ID: 32033573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Churros: a Docker-based pipeline for large-scale epigenomic analysis.
    Wang J; Nakato R
    DNA Res; 2024 Feb; 31(1):. PubMed ID: 38102723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling.
    Meers MP; Tenenbaum D; Henikoff S
    Epigenetics Chromatin; 2019 Jul; 12(1):42. PubMed ID: 31300027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MESIA: multi-epigenome sample integration approach for precise peak calling.
    Park SG; Kim WJ; Moon JI; Kim KT; Ryoo HM
    Sci Rep; 2023 Nov; 13(1):20859. PubMed ID: 38012291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast alignment and preprocessing of chromatin profiles with Chromap.
    Zhang H; Song L; Wang X; Cheng H; Wang C; Meyer CA; Liu T; Tang M; Aluru S; Yue F; Liu XS; Li H
    Nat Commun; 2021 Nov; 12(1):6566. PubMed ID: 34772935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.