These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34019730)

  • 1. Cell-surface binding domains from Clostridium cellulovorans can be used for surface display of cellulosomal scaffoldins in Lactococcus lactis.
    Tarraran L; Gandini C; Luganini A; Mazzoli R
    Biotechnol J; 2021 Aug; 16(8):e2100064. PubMed ID: 34019730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans.
    Kosugi A; Amano Y; Murashima K; Doi RH
    J Bacteriol; 2004 Oct; 186(19):6351-9. PubMed ID: 15375114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis.
    Wieczorek AS; Martin VJ
    Microb Cell Fact; 2010 Sep; 9():69. PubMed ID: 20840763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE.
    Kosugi A; Murashima K; Tamaru Y; Doi RH
    J Bacteriol; 2002 Feb; 184(4):884-8. PubMed ID: 11807046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity.
    Doi RH; Tamaru Y
    Chem Rec; 2001; 1(1):24-32. PubMed ID: 11893054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA.
    Koukiekolo R; Cho HY; Kosugi A; Inui M; Yukawa H; Doi RH
    Appl Environ Microbiol; 2005 Jul; 71(7):3504-11. PubMed ID: 16000754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature.
    Stern J; Moraïs S; Lamed R; Bayer EA
    mBio; 2016 Apr; 7(2):e00083. PubMed ID: 27048796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intein-mediated assembly of tunable scaffoldins for facile synthesis of designer cellulosomes.
    Han Z; Su WW
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1331-1342. PubMed ID: 29275429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic interaction of Clostridium cellulovorans cellulosomal cellulases and HbpA.
    Matsuoka S; Yukawa H; Inui M; Doi RH
    J Bacteriol; 2007 Oct; 189(20):7190-4. PubMed ID: 17693494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates.
    Vazana Y; Barak Y; Unger T; Peleg Y; Shamshoum M; Ben-Yehezkel T; Mazor Y; Shapiro E; Lamed R; Bayer EA
    Biotechnol Biofuels; 2013 Dec; 6(1):182. PubMed ID: 24341331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR chemical shift assignments of a module of unknown function in the cellulosomal secondary scaffoldin ScaF from Clostridium thermocellum.
    Li J; Chen C; Liu YJ; Cui Q; Bayer EA; Feng Y
    Biomol NMR Assign; 2021 Oct; 15(2):329-334. PubMed ID: 33876380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the cellulosomal scaffolding protein CbpC from Clostridium cellulovorans 743B.
    Nakajima D; Shibata T; Tanaka R; Kuroda K; Ueda M; Miyake H
    J Biosci Bioeng; 2017 Oct; 124(4):376-380. PubMed ID: 28533157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE.
    Tamaru Y; Doi RH
    J Bacteriol; 1999 May; 181(10):3270-6. PubMed ID: 10322032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient yeast surface-display of novel complex synthetic cellulosomes.
    Tang H; Wang J; Wang S; Shen Y; Petranovic D; Hou J; Bao X
    Microb Cell Fact; 2018 Aug; 17(1):122. PubMed ID: 30086751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes.
    Cha J; Matsuoka S; Chan H; Yukawa H; Inui M; Doi RH
    J Microbiol Biotechnol; 2007 Nov; 17(11):1782-8. PubMed ID: 18092461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colocalization and Disposition of Cellulosomes in
    Artzi L; Dadosh T; Milrot E; Moraïs S; Levin-Zaidman S; Morag E; Bayer EA
    mBio; 2018 Feb; 9(1):. PubMed ID: 29437917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans.
    Han SO; Yukawa H; Inui M; Doi RH
    Microbiology (Reading); 2005 May; 151(Pt 5):1491-1497. PubMed ID: 15870459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cohesin-dockerin interactions of cellulosomal subunits of Clostridium cellulovorans.
    Park JS; Matano Y; Doi RH
    J Bacteriol; 2001 Sep; 183(18):5431-5. PubMed ID: 11514529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans.
    Murashima K; Kosugi A; Doi RH
    J Bacteriol; 2002 Sep; 184(18):5088-95. PubMed ID: 12193625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.