These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 34019760)
1. Modeling LiF and FLiBe Molten Salts with Robust Neural Network Interatomic Potential. Lam ST; Li QJ; Ballinger R; Forsberg C; Li J ACS Appl Mater Interfaces; 2021 Jun; 13(21):24582-24592. PubMed ID: 34019760 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials. Rodriguez A; Lam S; Hu M ACS Appl Mater Interfaces; 2021 Nov; 13(46):55367-55379. PubMed ID: 34767334 [TBL] [Abstract][Full Text] [Related]
3. Temperature-Dependent Properties of Molten Li Baral K; San S; Sakidja R; Couet A; Sridharan K; Ching WY ACS Omega; 2021 Aug; 6(30):19822-19835. PubMed ID: 34368569 [TBL] [Abstract][Full Text] [Related]
4. Compositional transferability of deep potential in molten LiF-BeF Li X; Xu T; Gong Y Phys Chem Chem Phys; 2024 Apr; 26(15):12044-12052. PubMed ID: 38578045 [TBL] [Abstract][Full Text] [Related]
5. HT-NMR Studies of the Be-F Coordination Structure in FNaBe and FLiBe Mixed Salts. Sun J; Huang H; Wu H; Lin Y; Yang C; Ge M; Qian Y; Fu X; Liu H JACS Au; 2024 Jun; 4(6):2211-2219. PubMed ID: 38938815 [TBL] [Abstract][Full Text] [Related]
6. Design and operation of a molten salt electrochemical cell. Consiglio AN; Carotti F; Liu E; Williams H; Scarlat RO MethodsX; 2022; 9():101626. PubMed ID: 35251944 [TBL] [Abstract][Full Text] [Related]
7. Comparative Studies of the Structural and Transport Properties of Molten Salt FLiNaK Using the Machine-Learned Neural Network and Reparametrized Classical Forcefields. Lee SC; Zhai Y; Li Z; Walter NP; Rose M; Heuser BJ; Z Y J Phys Chem B; 2021 Sep; 125(37):10562-10570. PubMed ID: 34496565 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the local structure of molten ThF Sun J; Guo X; Zhou J; Dai J; Song S; Bao H; Lin J; Yu H; He S; Jiang F; Long D; Zhang L; Wang JQ J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1733-1741. PubMed ID: 31490165 [TBL] [Abstract][Full Text] [Related]
9. Density Measurements of Molten LiF-BeF Moon J; McFarlane J; Andrews HB; Robb KR; Ross M; Sulejmanovic D; Zhang Y; Stringfellow E; Agca C; Schorne-Pinto J; Besmann TM ACS Omega; 2024 Jun; 9(25):27204-27213. PubMed ID: 38947831 [TBL] [Abstract][Full Text] [Related]
10. Deep neural network based quantum simulations and quasichemical theory for accurate modeling of molten salt thermodynamics. Shi Y; Lam ST; Beck TL Chem Sci; 2022 Jul; 13(28):8265-8273. PubMed ID: 35919729 [TBL] [Abstract][Full Text] [Related]
11. Probing the local structure of FLiBe melts and solidified salts by Fu X; Liu Y; Huang H; Wu H; Sun J; Han L; Ge M; Qian Y; Liu H Phys Chem Chem Phys; 2023 Jul; 25(29):19446-19452. PubMed ID: 37403714 [TBL] [Abstract][Full Text] [Related]
12. Inhibition effect of ZrF Peng H; Song Y; Ji N; Xie L; Huang W; Gong Y RSC Adv; 2021 May; 11(31):18708-18716. PubMed ID: 35478609 [TBL] [Abstract][Full Text] [Related]
13. Constant-potential molecular dynamics simulations of molten salt double layers for FLiBe and FLiNaK. Langford L; Winner N; Hwang A; Williams H; Vergari L; Scarlat RO; Asta M J Chem Phys; 2022 Sep; 157(9):094705. PubMed ID: 36075711 [TBL] [Abstract][Full Text] [Related]
14. Actinide Molten Salts: A Machine-Learning Potential Molecular Dynamics Study. Nguyen MT; Rousseau R; Paviet PD; Glezakou VA ACS Appl Mater Interfaces; 2021 Nov; 13(45):53398-53408. PubMed ID: 34494435 [TBL] [