These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34019774)
1. Effects of four woody plant species revegetation on habitat improvement and the spatial distribution of arsenic and antimony in zinc smelting slag. Sun H; Li X; Wu Y Int J Phytoremediation; 2021; 23(14):1506-1518. PubMed ID: 34019774 [No Abstract] [Full Text] [Related]
2. Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site. Luo Y; Wu Y; Shu J; Wu Z Environ Pollut; 2019 Oct; 253():330-341. PubMed ID: 31325877 [TBL] [Abstract][Full Text] [Related]
3. Root-induced changes in aggregation characteristics and potentially toxic elements (PTEs) speciation in a revegetated artificial zinc smelting waste slag site. Luo Y; Wu X; Sun H; Wu Y Chemosphere; 2020 Mar; 243():125414. PubMed ID: 31783184 [TBL] [Abstract][Full Text] [Related]
4. Chemodiversity of dissolved organic matter and its association with the bacterial community at a zinc smelting slag site after 10 years of direct revegetation. Zhou D; Luo Y; Luo Y; He Y; Chen Y; Wan Z; Wu Y Sci Total Environ; 2024 Nov; 950():175322. PubMed ID: 39111427 [TBL] [Abstract][Full Text] [Related]
5. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years. Luo Y; Wu Y; Wang H; Xing R; Zheng Z; Qiu J; Yang L Environ Sci Pollut Res Int; 2018 May; 25(15):14773-14788. PubMed ID: 29541981 [TBL] [Abstract][Full Text] [Related]
6. Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: Implications for phytoremediation. Luo Y; Zheng Z; Wu P; Wu Y Chemosphere; 2022 Jan; 286(Pt 1):131678. PubMed ID: 34346324 [TBL] [Abstract][Full Text] [Related]
7. The Potential Use of Vetiveria zizanioides for the Phytoremediation of Antimony, Arsenic and Their Co-Contamination. Mirza N; Mubarak H; Chai LY; Yong W; Khan MJ; Khan QU; Hashmi MZ; Farooq U; Sarwar R; Yang ZH Bull Environ Contam Toxicol; 2017 Oct; 99(4):511-517. PubMed ID: 28785982 [TBL] [Abstract][Full Text] [Related]
8. Pollution characteristics and risk assessment of antimony and arsenic in a typical abandoned antimony smelter. Ren W; Ran Y; Mou Y; Cui Y; Sun B; Yu L; Wan D; Hu D; Zhao P Environ Geochem Health; 2023 Jul; 45(7):5467-5480. PubMed ID: 37099043 [TBL] [Abstract][Full Text] [Related]
9. Vertical distribution of nutrients, enzyme activities, microbial properties, and heavy metals in zinc smelting slag site revegetated with two herb species: Implications for direct revegetation. Luo Y; Xing R; Wan Z; Chen Y Sci Total Environ; 2023 Jun; 879():163206. PubMed ID: 37011682 [TBL] [Abstract][Full Text] [Related]
10. Organic amendment application affects the release behaviour, bioavailability, and speciation of heavy metals in zinc smelting slag: Insight into dissolved organic matter. Luo Y; He Y; Zhou D; Pan L; Wu Y J Hazard Mater; 2024 Mar; 465():133105. PubMed ID: 38056253 [TBL] [Abstract][Full Text] [Related]
11. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
12. Microbial community structures and their driving factors in a typical gathering area of antimony mining and smelting in South China. Wang W; Xiao S; Amanze C; Anaman R; Zeng W Environ Sci Pollut Res Int; 2022 Jul; 29(33):50070-50084. PubMed ID: 35226270 [TBL] [Abstract][Full Text] [Related]
13. [Characteristics of Pollution and Microbial Community Structure in the Antimony Mining Area of Longnan, Gansu Province]. Zhao QY; Zhang ZM; Tan Z; Li WJ; Pan LB; Guan X; Li JH Huan Jing Ke Xue; 2024 Jul; 45(7):4266-4278. PubMed ID: 39022972 [TBL] [Abstract][Full Text] [Related]
14. Mushroom residue modification enhances phytoremediation potential of Paulownia fortunei to lead-zinc slag. Han L; Chen Y; Chen M; Wu Y; Su R; Du L; Liu Z Chemosphere; 2020 Aug; 253():126774. PubMed ID: 32464764 [TBL] [Abstract][Full Text] [Related]
15. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants. Zhu Y; Yang J; Wang L; Lin Z; Dai J; Wang R; Yu Y; Liu H; Rensing C; Feng R Sci Total Environ; 2020 Oct; 738():140232. PubMed ID: 32806353 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland). Gál J; Hursthouse A; Cuthbert S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1263-74. PubMed ID: 17654146 [TBL] [Abstract][Full Text] [Related]
17. Microbial response to antimony-arsenic distribution and geochemical factors at arable soil around an antimony mining site. Huang H; Lin K; Lei L; Li Y; Li Y; Liang K; Shangguan Y; Xu H Environ Sci Pollut Res Int; 2023 Apr; 30(16):47972-47984. PubMed ID: 36746862 [TBL] [Abstract][Full Text] [Related]
18. Antimony in the Soil-Plant System in an Sb Mining/Smelting Area of Southwest China. Ning Z; Xiao T; Xiao E Int J Phytoremediation; 2015; 17(11):1081-9. PubMed ID: 26067424 [TBL] [Abstract][Full Text] [Related]
19. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Fu Z; Wu F; Mo C; Deng Q; Meng W; Giesy JP Sci Total Environ; 2016 Jan; 539():97-104. PubMed ID: 26356182 [TBL] [Abstract][Full Text] [Related]
20. Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China. Guo D; Fan Z; Lu S; Ma Y; Nie X; Tong F; Peng X Sci Rep; 2019 Feb; 9(1):1947. PubMed ID: 30760787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]