These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34019774)
21. Preparation of environmental remediation material based on manganese-slag and sewage sludge as a strategy for remediation of cadmium pollution. Zhenggang X; Qi J; Mengxin W; Yunlin Z; Tianyu W; Wenhan Z; Ziyi H; Guiyan Y J Environ Manage; 2023 Dec; 347():119096. PubMed ID: 37774661 [TBL] [Abstract][Full Text] [Related]
22. Characteristics of Bacterial Community and Function in Paddy Soil Profile around Antimony Mine and Its Response to Antimony and Arsenic Contamination. Huang B; Long J; Liao H; Liu L; Li J; Zhang J; Li Y; Wang X; Yang R Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31817102 [TBL] [Abstract][Full Text] [Related]
23. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China. Wei C; Deng Q; Wu F; Fu Z; Xu L Biol Trace Elem Res; 2011 Dec; 144(1-3):1150-8. PubMed ID: 21547400 [TBL] [Abstract][Full Text] [Related]
24. Comparison of the single and combined effects of arsenic and antimony on growth and physiology of giant reed (Arundo donax L.). Shetty R; Vidya CS; Vaculík M Environ Sci Pollut Res Int; 2021 Oct; 28(39):55476-55485. PubMed ID: 34138437 [TBL] [Abstract][Full Text] [Related]
25. Valency distributions and geochemical fractions of arsenic and antimony in non-ferrous smelting soils with varying particle sizes. Zhao J; Luo Q; Ding L; Fu R; Zhang F; Cui C Ecotoxicol Environ Saf; 2022 Mar; 233():113312. PubMed ID: 35217308 [TBL] [Abstract][Full Text] [Related]
26. The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Feng R; Wang X; Wei C; Tu S Int J Phytoremediation; 2015; 17(1-6):348-54. PubMed ID: 25409247 [TBL] [Abstract][Full Text] [Related]
27. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores. Hu X; Guo X; He M; Li S J Environ Sci (China); 2016 Jun; 44():171-179. PubMed ID: 27266313 [TBL] [Abstract][Full Text] [Related]
28. Concentration and speciation of antimony and arsenic in soil profiles around the world's largest antimony metallurgical area in China. Yang H; He M; Wang X Environ Geochem Health; 2015 Feb; 37(1):21-33. PubMed ID: 24969304 [TBL] [Abstract][Full Text] [Related]
29. Spatial Distribution and Environmental Risk of Arsenic and Antimony in Soil Around an Antimony Smelter of Qinglong County. He Y; Han Z; Wu F; Xiong J; Gu S; Wu P Bull Environ Contam Toxicol; 2021 Dec; 107(6):1043-1052. PubMed ID: 33787976 [TBL] [Abstract][Full Text] [Related]
30. Stabilization of arsenic and antimony Co-contaminated soil with an iron-based stabilizer: Assessment of strength, leaching and hydraulic properties and immobilization mechanisms. Zhou S; Du Y; Feng Y; Sun H; Xia W; Yuan H Chemosphere; 2022 Aug; 301():134644. PubMed ID: 35452641 [TBL] [Abstract][Full Text] [Related]
31. Impact of arsenic on uptake and bio-accumulation of antimony by arsenic hyperaccumulator Pteris vittata. Müller K; Daus B; Mattusch J; Vetterlein D; Merbach I; Wennrich R Environ Pollut; 2013 Mar; 174():128-33. PubMed ID: 23257262 [TBL] [Abstract][Full Text] [Related]
32. The release analysis of As and Cr metals in lead-zinc smelting slag: Mineralogical analysis, bioavailability and leachability analysis. Ma Y; Li C; Yan J; Yu H; Kan H; Yu W; Zhou X; Meng Q; Dong P Environ Res; 2023 Jul; 229():115751. PubMed ID: 36966997 [TBL] [Abstract][Full Text] [Related]
33. Sb/As immobilization and soil function improvement under the combined remediation strategy of modified biochar and Sb-oxidizing bacteria at a smelting site. Li X; Fan J; Zhu F; Yan Z; Hartley W; Yang X; Zhong X; Jiang Y; Xue S J Hazard Mater; 2024 Jun; 471():134302. PubMed ID: 38640664 [TBL] [Abstract][Full Text] [Related]
34. The leaching of antimony and arsenic by simulated acid rain in three soil types from the world's largest antimony mine area. Long J; Tan D; Zhou Y; Zhou D; Luo Y; Bin D; Wang Z; Wang J; Lei M Environ Geochem Health; 2022 Dec; 44(12):4253-4268. PubMed ID: 34982347 [TBL] [Abstract][Full Text] [Related]
35. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China. Peng Y; Chen J; Wei H; Li S; Jin T; Yang R Ecotoxicol Environ Saf; 2018 May; 152():24-32. PubMed ID: 29367113 [TBL] [Abstract][Full Text] [Related]
36. Standardized framework for assessing soil quality at antimony smelting site by considering microbial-induced resilience and heavy metal contamination. Jiang S; Deng X; Ma L; Wang H; Wang X; Feng L; Zhu F; Xue S; Mohammad A J Environ Sci (China); 2025 Feb; 148():306-320. PubMed ID: 39095167 [TBL] [Abstract][Full Text] [Related]
37. Woody plants have the advantages in the phytoremediation process of manganese ore with the help of microorganisms. Nong H; Liu J; Chen J; Zhao Y; Wu L; Tang Y; Liu W; Yang G; Xu Z Sci Total Environ; 2023 Mar; 863():160995. PubMed ID: 36535473 [TBL] [Abstract][Full Text] [Related]
38. Integrating Huang H; Fan L; Zhao Y; Jin Q; Yang G; Zhao D; Xu Z Front Microbiol; 2022; 13():871581. PubMed ID: 35592006 [TBL] [Abstract][Full Text] [Related]
39. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. Xiao E; Krumins V; Xiao T; Dong Y; Tang S; Ning Z; Huang Z; Sun W Environ Pollut; 2017 Feb; 221():244-255. PubMed ID: 27979681 [TBL] [Abstract][Full Text] [Related]
40. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]