These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34019809)

  • 1. Molecular mechanism of N-terminal acetylation by the ternary NatC complex.
    Deng S; Gottlieb L; Pan B; Supplee J; Wei X; Petersson EJ; Marmorstein R
    Structure; 2021 Oct; 29(10):1094-1104.e4. PubMed ID: 34019809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular role of NAA38 in thermostability and catalytic activity of the human NatC N-terminal acetyltransferase.
    Deng S; Gardner SM; Gottlieb L; Pan B; Petersson EJ; Marmorstein R
    Structure; 2023 Feb; 31(2):166-173.e4. PubMed ID: 36638802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC.
    Van Damme P; Osberg C; Jonckheere V; Glomnes N; Gevaert K; Arnesen T; Aksnes H
    J Biol Chem; 2023 Feb; 299(2):102824. PubMed ID: 36567016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of an alternatively spliced nuclear isoform of human N-terminal acetyltransferase Naa30.
    Varland S; Myklebust LM; Goksøyr SØ; Glomnes N; Torsvik J; Varhaug JE; Arnesen T
    Gene; 2018 Feb; 644():27-37. PubMed ID: 29247799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the interaction between NatA and the ribosome for co-translational protein acetylation.
    Magin RS; Deng S; Zhang H; Cooperman B; Marmorstein R
    PLoS One; 2017; 12(10):e0186278. PubMed ID: 29016658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergent architecture of the heterotrimeric NatC complex explains N-terminal acetylation of cognate substrates.
    Grunwald S; Hopf LVM; Bock-Bierbaum T; Lally CCM; Spahn CMT; Daumke O
    Nat Commun; 2020 Nov; 11(1):5506. PubMed ID: 33139728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonsense variant in the N-terminal acetyltransferase NAA30 may be associated with global developmental delay and tracheal cleft.
    Varland S; Brønstad KM; Skinner SJ; Arnesen T
    Am J Med Genet A; 2023 Sep; 191(9):2402-2410. PubMed ID: 37387332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Evolutionarily Conserved
    Ochaya S; Franzén O; Buhwa DA; Foyn H; Butler CE; Stove SI; Tyler KM; Arnesen T; Matovu E; Åslund L; Andersson B
    J Parasitol Res; 2019; 2019():6594212. PubMed ID: 30956813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopy-based Saccharomyces cerevisiae complementation model reveals functional conservation and redundancy of N-terminal acetyltransferases.
    Osberg C; Aksnes H; Ninzima S; Marie M; Arnesen T
    Sci Rep; 2016 Aug; 6():31627. PubMed ID: 27555049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex.
    Liszczak G; Goldberg JM; Foyn H; Petersson EJ; Arnesen T; Marmorstein R
    Nat Struct Mol Biol; 2013 Sep; 20(9):1098-105. PubMed ID: 23912279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Role for Human N-alpha Acetyltransferase 30 (Naa30) in Maintaining Mitochondrial Integrity.
    Van Damme P; Kalvik TV; Starheim KK; Jonckheere V; Myklebust LM; Menschaert G; Varhaug JE; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2016 Nov; 15(11):3361-3372. PubMed ID: 27694331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal acetylation by NatC is not a general determinant for substrate subcellular localization in Saccharomyces cerevisiae.
    Aksnes H; Osberg C; Arnesen T
    PLoS One; 2013; 8(4):e61012. PubMed ID: 23613772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae.
    Varland S; Arnesen T
    BMC Res Notes; 2018 Jun; 11(1):404. PubMed ID: 29929531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human NAA30 can rescue yeast mak3∆ mutant growth phenotypes.
    Drazic A; Varland S
    Biosci Rep; 2021 Mar; 41(3):. PubMed ID: 33600573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.
    Liszczak G; Marmorstein R
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14652-7. PubMed ID: 23959863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK.
    Deng S; McTiernan N; Wei X; Arnesen T; Marmorstein R
    Nat Commun; 2020 Feb; 11(1):818. PubMed ID: 32042062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation.
    Warnhoff K; Murphy JT; Kumar S; Schneider DL; Peterson M; Hsu S; Guthrie J; Robertson JD; Kornfeld K
    PLoS Genet; 2014 Oct; 10(10):e1004703. PubMed ID: 25330323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of HypK regulating N-terminal acetylation by the NatA complex.
    Weyer FA; Gumiero A; Lapouge K; Bange G; Kopp J; Sinning I
    Nat Commun; 2017 Jun; 8():15726. PubMed ID: 28585574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of Human NatA and Its Regulation by the Huntingtin Interacting Protein HYPK.
    Gottlieb L; Marmorstein R
    Structure; 2018 Jul; 26(7):925-935.e8. PubMed ID: 29754825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic, dynamic, ligand binding properties, and structural models of a dual-substrate specific nudix hydrolase from Schizosaccharomyces pombe.
    Garza JA; Ilangovan U; Hinck AP; Barnes LD
    Biochemistry; 2009 Jul; 48(26):6224-39. PubMed ID: 19462967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.